srki function

Marjanovic Srdan
M.Biljanica, 16201 Manojlovce
Serbia
ms.biljanica@gmail.com

November 2017

1 Introduction

Movement of a defined geometric object in the coordinate system.
Structure of function :

- one or more independent variables
- conditions:
geometrical object
independent and dependent points
coordinate system
- basic and aggregate dependent variable and constant

I will describe the function that occurs in the 2D coordinate system.

2 Definition of the geometric object in the plane

Notation :
$\widehat{x_{n}}-$ point
$\widehat{s_{n}}$ - basic and aggregate parts of the geometric object

2.1 straight line

points:
$\widehat{x_{1}}(A)$
$\widehat{x_{2}}(B)$

```
basic:
\(\widehat{s_{1}}(A B)\) - straight line
```


2.2 angle

points:
$\widehat{x_{1}}(A)$
$\widehat{x_{2}}(B)$
$\widehat{x_{3}}(C)$
basic:
$\widehat{s_{1}}(A B)$ - straight line
$\widehat{s_{2}}(B C)$ - straight line
$\widehat{s_{3}}(\alpha)$ - inner angle
$\widehat{s_{3}}(\beta)$ - external angle

2-aggregate :
$\widehat{s_{5}}=\widehat{s_{1}}+\widehat{s_{2}}$
$\widehat{s_{6}}=\widehat{s_{1}}+\widehat{s_{3}}$
$\widehat{s_{7}}=\widehat{s_{1}}+\widehat{s_{4}}$
$\widehat{s_{8}}=\widehat{s_{2}}+\widehat{s_{3}}$
$\widehat{s_{9}}=\widehat{s_{2}}+\widehat{s_{4}}$
$\widehat{s_{10}}=\widehat{s_{3}}+\widehat{s_{4}}$
3-aggregate :
$\widehat{s_{11}}=\widehat{s_{1}}+\widehat{s_{2}}+\widehat{s_{3}}$
$\widehat{s_{12}}=\widehat{s_{1}}+\widehat{s_{2}}+\widehat{s_{4}}$
$\widehat{s_{13}}=\widehat{s_{1}}+\widehat{s_{3}}+\widehat{s_{4}}$
$\widehat{s_{14}}=\widehat{s_{2}}+\widehat{s_{3}}+\widehat{s_{4}}$
4-aggregate :
$\widehat{s_{15}}=\widehat{s_{1}}+\widehat{s_{2}}+\widehat{s_{3}}+\widehat{s_{4}}$

3 Independent and dependent points

- independent points have a constant position in the coordinate system.
- dependent points move in the coordinate system according to the graph of the function.

4 Srki function - example

Simplest form of srki functions
General form - straight line, 2D coordinate system, one independent point, one
dependent point.
$\widehat{x_{1}}(a, b), \widehat{x_{2}}(x, f(x)), \widehat{s_{1}}=\sqrt{(x-a)^{2}+(f(x)-b)^{2}}$
for $\widehat{x_{1}}(4,7)$ and $\widehat{x_{2}}\left(x, 2 x^{2}+1\right), \widehat{s_{1}}=\sqrt{(x-4)^{2}+\left(\left(2 x^{2}+1\right)-7\right)^{2}}$

5 Conclusion

This is the beginning of one area of mathematics. Mathematics used now are limited, which is due to a large number of axioms. I have devised mathematics based on a natural and real basis, it has much greater potential than the present one .

