Korisnički Kontrolni Panel
Pogledajte svoj profil
Pogledajte svoje postove
ČPP
Prijavite se

Matematički forum na kojem možete da diskutujete o raznim matematičkim oblastima, pomognete drugima oko rešavanja zadataka, a i da dobijete pomoć kada vam zatreba


















Index stranica OSTALE MATEMATIČKE OBLASTI ALGEBRA

Logaritmi

[inlmath]a^2-b^2=\left(a+b\right)\left(a-b\right)[/inlmath]

Moderator: Corba248

Logaritmi

Postod Mila Maric » Petak, 29. Decembar 2017, 22:03

Zadatak je sa takmicenja.
Skup resenja nejednacine [inlmath]\log_x\frac{8-12x}{x-6}>2[/inlmath] je:

Resenje je [inlmath]\left(\frac{2}{3},1\right)\cup(2,6)[/inlmath].
Pocela sam tako sto sam napisala
[dispmath]\log_x\frac{8-12x}{x-6}>\log_xx^2[/dispmath] iz cega sledi da je
[dispmath]\frac{8-12x}{x-6}>x^2[/dispmath] i kada to sredim dobijem
[dispmath]\frac{-x^3+6x^2-12x+8}{x-6}>0[/dispmath] Htela sam da resim preko grafika al mi smeta sto ima [inlmath]x^3[/inlmath] pa ne znam kako dalje.
Napisala sam uslove da [inlmath]x\ne1[/inlmath] i [inlmath]x>0[/inlmath] i da [inlmath]\frac{8-12x}{x-6}\ge0[/inlmath] gde dobijem da je [inlmath]x\in\left(\frac{2}{3},6\right)[/inlmath].
 
Postovi: 22
Zahvalio se: 20 puta
Pohvaljen: 0 puta

Sharuj ovu temu na:

Share on Facebook Facebook Share on Twitter Twitter Share on MySpace MySpace Share on Google+ Google+

Re: Logaritmi

Postod bobanex » Subota, 30. Decembar 2017, 00:34

Hint: [inlmath]x^3-3\cdot x^2\cdot2+3\cdot x\cdot2^2-2^3[/inlmath]
Ali mi reci kako znaš da se znak nejednakosti neće promeniti pri oslobađanju od logaritama?
Korisnikov avatar
bobanex  OFFLINE
 
Postovi: 448
Lokacija: Požarevac
Zahvalio se: 0 puta
Pohvaljen: 455 puta

Re: Logaritmi

Postod Mila Maric » Subota, 30. Decembar 2017, 01:15

Sad vidim da na to nisam obratila paznju, trebala sam da stavim da je u prvom slucaju [inlmath]x>1[/inlmath] a u drugom slucaju [inlmath]0<x<1[/inlmath], tako da ce se u drugom slucaju znak menjati, ali opet ne znam kako dalje..
 
Postovi: 22
Zahvalio se: 20 puta
Pohvaljen: 0 puta

Re: Logaritmi

Postod bobanex » Subota, 30. Decembar 2017, 01:19

[inlmath]-x^3+6x^2-12x+8=-\left(x-2\right)^3[/inlmath]
Mislim da je ovo sasvim dovoljno da možeš rešiti nejednačinu.
Korisnikov avatar
bobanex  OFFLINE
 
Postovi: 448
Lokacija: Požarevac
Zahvalio se: 0 puta
Pohvaljen: 455 puta

Re: Logaritmi

Postod Mila Maric » Subota, 30. Decembar 2017, 01:37

Naravno, samo nisam stigla na vreme da izmenim post :)
 
Postovi: 22
Zahvalio se: 20 puta
Pohvaljen: 0 puta

  • +1

Re: Logaritmi

Postod Daniel » Nedelja, 31. Decembar 2017, 02:49

Kad u zadatku naletiš na polinom trećeg stepena, možeš prvo pokušati s pretpostavkom da su sve njegove nule celobrojne (što u većini zadataka jeste slučaj). Jer, ako su sve nule celobrojne, tada je svaka od tih nula celobrojni činilac slobodnog člana tog polinoma. Ovde je slobodni član jednak [inlmath]8[/inlmath], njegovi celobrojni činioci su [inlmath]-8,-4,-2,-1,1,2,4,8[/inlmath]. Dakle, sve su to kandidati za celobrojne nule tog polinoma, pa možeš isprobavati jedan po jedan.
Bilo je o tome govora u ovoj temi.

Mila Maric je napisao:Napisala sam uslove da [inlmath]x\ne1[/inlmath] i [inlmath]x>0[/inlmath] i da [inlmath]\frac{8-12x}{x-6}{\color{red}\ge}0[/inlmath]

Numerus mora biti strogo veći od nule. Znači, ne [inlmath]\frac{8-12x}{x-6}\ge0[/inlmath] već [inlmath]\frac{8-12x}{x-6}>0[/inlmath].
I do not fear death. I had been dead for billions and billions of years before I was born, and had not suffered the slightest inconvenience from it. – Mark Twain
Korisnikov avatar
Daniel  OFFLINE
Administrator
 
Postovi: 7290
Lokacija: Beograd
Zahvalio se: 3784 puta
Pohvaljen: 3951 puta


Povratak na ALGEBRA

Ko je OnLine

Korisnici koji su trenutno na forumu: Nema registrovanih korisnika i 9 gostiju


Index stranicaTimObriši sve kolačiće boarda
Danas je Sreda, 26. Septembar 2018, 16:59 • Sva vremena su u UTC + 1 sat [ DST ]
Pokreće ga phpBB® Forum Software © phpBB Group
Prevod – www.CyberCom.rs