Korisnički Kontrolni Panel
Pogledajte svoj profil
Pogledajte svoje postove
ČPP
Prijavite se

Matematički forum na kojem možete da diskutujete o raznim matematičkim oblastima, pomognete drugima oko rešavanja zadataka, a i da dobijete pomoć kada vam zatreba


















Index stranica MATEMATIČKA ANALIZA NIZOVI I REDOVI

Drugi član geometrijske progresije – prijemni ETF 2018.

[inlmath]a_1,\:a_2,\:...\:a_{n-1},\:a_n[/inlmath]

Drugi član geometrijske progresije – prijemni ETF 2018.

Postod PantaRei » Sreda, 04. Jul 2018, 13:29

Prijemni ispit ETF - 25. jun 2018.
14. zadatak


14. Prva dva člana rastuće geometrijske progresije su rešenja jednačine
[dispmath]\frac{2^{2\cdot\sin x}}{1+2^{2\cdot\sin x}}=1-\frac{3-2^{2\cdot\sin x}}{5-2^{2\cdot\sin x}}[/dispmath] na intervalu [inlmath](0,\pi)[/inlmath]. Ako je zbir ove progresije [inlmath]651\pi[/inlmath], tada je ukupan broj njenih članova jednak:
Tačan odgovor: [inlmath]6[/inlmath]

Evo kako sam ja pokušala da rešim ovaj zadatak:

Uvela sam smenu:
[dispmath]t=2^{2\cdot\sin x}[/dispmath] Dakle,
[dispmath]\frac{t}{1+t}=1-\frac{3-t}{5-t}\\
\frac{t}{1+t}=\frac{2}{5-t}\\
5\cdot t-t^2=2+2\cdot t[/dispmath] Dobijem kvadratnu jednačinu:
[dispmath]t^2-3\cdot t+2=0[/dispmath] Njena rešenja su
[dispmath]t=2\quad\lor\quad t=1[/dispmath]
[dispmath]2^{2\cdot\sin x}=2\\
2\cdot\sin x=1\\
\sin x=\frac{1}{2}[/dispmath] Na intervalu [dispmath](0,\pi)[/dispmath][dispmath]x=\frac{\pi}{6}[/dispmath]
A drugo rešenje ne spada u dati interval:
[dispmath]2^{2\cdot\sin x}=1\\
2\cdot\sin x=2^0\\
\sin x=0\\
x=\pi\quad\lor\quad0[/dispmath] što su, u stvari, granice intervala.

Međutim, potrebna su mi oba rešenja da bih izračunala količnik niza i odredila broj njegovih članova. Dakle, negde grešim u postupku zacelo. :D

Da li biste mogli da mi ukažete na tu grešku?

PS Nadam se da nisam previše zabrljala sa Latexom, prvi put ga koristim. :)
Poslednji put menjao Daniel dana Sreda, 04. Jul 2018, 15:30, izmenjena samo jedanput
Razlog: Korekcija Latexa
 
Postovi: 3
Zahvalio se: 0 puta
Pohvaljen: 0 puta

Sharuj ovu temu na:

Share on Facebook Facebook Share on Twitter Twitter Share on MySpace MySpace Share on Google+ Google+

Re: Drugi član geometrijske progresije – prijemni ETF 2018.

Postod bobanex » Sreda, 04. Jul 2018, 13:42

[inlmath]\frac{5\pi}{6}[/inlmath] ti je drugo rešenje.
Korisnikov avatar
bobanex  OFFLINE
 
Postovi: 448
Lokacija: Požarevac
Zahvalio se: 0 puta
Pohvaljen: 455 puta

Re: Drugi član geometrijske progresije – prijemni ETF 2018.

Postod PantaRei » Sreda, 04. Jul 2018, 13:48

To znači da [inlmath]\sin x=\frac{1}{2}[/inlmath] ima dva rešenja. U redu, razumem sad.

Hvala!
 
Postovi: 3
Zahvalio se: 0 puta
Pohvaljen: 0 puta

Re: Drugi član geometrijske progresije – prijemni ETF 2018.

Postod Daniel » Sreda, 04. Jul 2018, 15:48

PantaRei je napisao:PS Nadam se da nisam previše zabrljala sa Latexom, prvi put ga koristim. :)

Sasvim OK. :thumbup: Uneo sam neke sitnije ispravke (umesto sinx treba \sin x).

PantaRei je napisao:[dispmath]2^{2\cdot\sin x}=1\\
2\cdot\sin x=2^0\\
\sin x=0[/dispmath]

Ovde je greščica u koraku [inlmath]2\sin x=2^0[/inlmath], koji treba zapravo da glasi [inlmath]2\sin x=0[/inlmath]. Verovatno je greška u kucanju, jer sledeći korak ti je dobar, [inlmath]\sin x=0[/inlmath].
(Nije ti neophodna oznaka [inlmath]\cdot[/inlmath] za množenje. Znači, sasvim je dovoljno pisati [inlmath]2\sin x[/inlmath]. Naravno, nije greška pisati ni [inlmath]2\cdot\sin x[/inlmath], ali ti je ovako lakše, jer se [inlmath]\cdot[/inlmath] podrazumeva.)

PantaRei je napisao:To znači da [inlmath]\sin x=\frac{1}{2}[/inlmath] ima dva rešenja.

Da, ima dva rešenja, što zaključuješ na potpuno isti način na koji si zaključila i da [inlmath]\sin x=0[/inlmath] ima rešenja na granicama intervala ([inlmath]0[/inlmath] i [inlmath]\pi[/inlmath]). Znači, nacrtaš ili zamisliš trigonometrijsku kružnicu i gledaš za koje će vrednosti uglova u intervalu [inlmath](0,\pi)[/inlmath] („gornji“ deo kružnice), projekcija na [inlmath]y[/inlmath]-osu (tj. sinus) iznositi [inlmath]\frac{1}{2}[/inlmath]. To će važiti za dva ugla – jedan u [inlmath]I[/inlmath] kvadrantu, [inlmath]\frac{\pi}{6}[/inlmath], i jedan u [inlmath]II[/inlmath] kvadrantu, [inlmath]\frac{5\pi}{6}[/inlmath].
I do not fear death. I had been dead for billions and billions of years before I was born, and had not suffered the slightest inconvenience from it. – Mark Twain
Korisnikov avatar
Daniel  OFFLINE
Administrator
 
Postovi: 7290
Lokacija: Beograd
Zahvalio se: 3784 puta
Pohvaljen: 3949 puta

Re: Drugi član geometrijske progresije – prijemni ETF 2018.

Postod PantaRei » Sreda, 04. Jul 2018, 16:50

Sada mi je potpuno jasan i taj detalj.
Srdačno hvala!
 
Postovi: 3
Zahvalio se: 0 puta
Pohvaljen: 0 puta


Povratak na NIZOVI I REDOVI

Ko je OnLine

Korisnici koji su trenutno na forumu: Nema registrovanih korisnika i 7 gostiju


Index stranicaTimObriši sve kolačiće boarda
Danas je Utorak, 25. Septembar 2018, 23:01 • Sva vremena su u UTC + 1 sat [ DST ]
Pokreće ga phpBB® Forum Software © phpBB Group
Prevod – www.CyberCom.rs