Korisnički Kontrolni Panel
Pogledajte svoj profil
Pogledajte svoje postove
ČPP
Prijavite se

Matematički forum na kojem možete da diskutujete o raznim matematičkim oblastima, pomognete drugima oko rešavanja zadataka, a i da dobijete pomoć kada vam zatreba


















Index stranica MATEMATIČKA ANALIZA FUNKCIJE

Domen i kodomen

[inlmath]f\left(x\right)=x^3+\ln\left|x+1\right|[/inlmath]

Domen i kodomen

Postod nikolalosic » Subota, 21. Jun 2014, 19:49

Treba mi pomoc oko sledece vrste zadataka. Citao sam temu o kodomenu i skontao sam poprilicno u cemu je stvar, samo da vidim moze li ovako da se odredjuje..Evo npr. jedan zadatak:
Odrediti jednoznacna preslikavanja(funkcije) koja su definisana datom jednakoscu, njihove domene i kodomene:
[dispmath]\left(\frac{x-1}{2}\right)^2+y^2=4,[/dispmath][dispmath]y_1=\sqrt{4-\frac{1}{4}(x-1)^2},[/dispmath][dispmath]y_2=-\sqrt{4-\frac{1}{4}(x-1)^2} ,[/dispmath][dispmath]D=[-3,5][/dispmath]
E sada, do ovoga sam sve uradio i sve mi je jasno.. Samo da pitam, je l' mogu ja kodomen da odredim tako sto posmatram [inlmath]y_1[/inlmath] i [inlmath]y_2[/inlmath] kao dve funkcije cije grafike nacrtam uzimajuci vrednosti za [inlmath]x[/inlmath] iz [inlmath]D=[-3,5][/inlmath] i onda posmatrajuci grafik da odredim kodomene. Kada se nacrta grafik vidi se da je za [inlmath]y_1[/inlmath] kodomen [inlmath][0,2][/inlmath] dok je za [inlmath]y_2[/inlmath] kodomen [inlmath][-2,0][/inlmath]. Ja stvarno ne vidim drugog nacina jar ubacivajuci "krajnje vrednosti domena", tj. u ovom slucaju [inlmath]-3[/inlmath] i [inlmath]5[/inlmath], kao sto se moze uraditi u nekim zadacima, ne dobijem nista.. Ali sad me zanima, ako moze ovako, da li postoji jos neki nacin? Meni ovaj izgleda najlaksi, jer se tacno vidi sa grafika do koje vrednosti funkcija raste i od koje opada i obrnuto.. I jos jedna stvar, ne znam kako bih uradio sa grafikom ako se dogodi da je kodomen, npr., [inlmath]\left[0,\sqrt 7\right][/inlmath], ako bude data tako neka funkcija, onda nema sanse da nacrtam grafik sa tim, jedino da molim boga da kodomen bude ceo broj.. A i nastaje problem ako je data funkcija ciji je domen ceo skup realnih brojeva. jer moze da se dogodi da je kodomen [inlmath][-10,\infty][/inlmath], a da ja nacrtam to isprobavajuci sve redom trebalo bi mi 100 godina.. :wtf: :think1:
 
Postovi: 31
Zahvalio se: 25 puta
Pohvaljen: 4 puta

Sharuj ovu temu na:

Share on Facebook Facebook Share on Twitter Twitter Share on MySpace MySpace Share on Google+ Google+

Re: Domen i kodomen

Postod ubavic » Nedelja, 22. Jun 2014, 13:12

nikolalosic je napisao:E sada, do ovoga sam sve uradio i sve mi je jasno.. Samo da pitam, je l' mogu ja kodomen da odredim tako sto posmatram [inlmath]y_1[/inlmath] i [inlmath]y_2[/inlmath] kao dve funkcije cije grafike nacrtam uzimajuci vrednosti za [inlmath]x[/inlmath] iz [inlmath]D=[-3,5][/inlmath] i onda posmatrajuci grafik da odredim kodomene. Ali sad me zanima, ako moze ovako, da li postoji jos neki nacin?

Najčešće se kodomen određuje tako što se posmatra grafik funkcije. Ali da bi odredio kodomen funkcije sa grafa, moraš posmatrati ekstremne vrednosti i vertikalne asimptote. U nekim slučajevima nećeš morati to da radiš, kao na primer kod kvadratne funkcije gde postoji formula za teme funkcije. Daniel je lepo naveo specijalne slučajeve.

nikolalosic je napisao:Ja stvarno ne vidim drugog nacina jar ubacivajuci "krajnje vrednosti domena", tj. u ovom slucaju [inlmath]-3[/inlmath] i [inlmath]5[/inlmath], kao sto se moze uraditi u nekim zadacima, ne dobijem nista..

[inlmath]-3[/inlmath] i [inlmath]5[/inlmath] se nalaze na "krajevima" domena, ali to ne znači da funkcija u tim tačkama ima ekstremnu vrednost. Pošto je u ovom slučaju u pitanju elipsa, maksimum "gornje" i minimum "donje" funkcije nalazi se u tački [inlmath]x=1[/inlmath].

nikolalosic je napisao:I jos jedna stvar, ne znam kako bih uradio sa grafikom ako se dogodi da je kodomen, npr., [inlmath]\left[0,\sqrt 7\right][/inlmath], ako bude data tako neka funkcija, onda nema sanse da nacrtam grafik sa tim, jedino da molim boga da kodomen bude ceo broj.. A i nastaje problem ako je data funkcija ciji je domen ceo skup realnih brojeva. jer moze da se dogodi da je kodomen [inlmath][-10,\infty][/inlmath], a da ja nacrtam to isprobavajuci sve redom trebalo bi mi 100 godina.. :wtf: :think1:

Opet, generalno algebarski moraš odrediti ekstremne vrednosti putem izvoda.
Korisnikov avatar
ubavic  OFFLINE
Zaslužni forumaš
 
Postovi: 508
Lokacija: Zrenjanin
Zahvalio se: 335 puta
Pohvaljen: 486 puta

Re: Domen i kodomen

Postod Daniel » Nedelja, 22. Jun 2014, 16:32

U ovom slučaju, krajnje vrednosti kodomena možeš odrediti i na sledeći način:

Za [inlmath]y_1[/inlmath], uočiš da vrednost te funkcije može biti ili nula ili pozitivna (zbog kvadratnog korena), tj. ne može biti negativna. Nulu dobiješ kada u izraz za [inlmath]y_1[/inlmath] uvrstiš umesto [inlmath]x[/inlmath] bilo koju od granica domena ([inlmath]-3[/inlmath] ili [inlmath]5[/inlmath]) i, prema tome, minimalna vrednost kodomena će biti nula, a maksimalnu vrednost ćeš imati onda kada je potkorena veličina, [inlmath]4-\frac{1}{4}\left(x-1\right)^2[/inlmath], maksimalna. Ona će biti maksimalna onda kada je [inlmath]\frac{1}{4}\left(x-1\right)^2[/inlmath] minimalno, tj. kada je [inlmath]\left(x-1\right)^2[/inlmath] minimalno. A pošto je to kvadrat realnog broja, njegova minimalna vrednost je nula (što će biti zadovoljeno za [inlmath]x=1[/inlmath]). Uvrstiš [inlmath]\left(x-1\right)^2=0[/inlmath] u izraz za [inlmath]y_1[/inlmath] i dobićeš da je [inlmath]\left(y_1\right)_\mbox{max}=2[/inlmath].

Slično radiš i za [inlmath]y_2[/inlmath]...
I do not fear death. I had been dead for billions and billions of years before I was born, and had not suffered the slightest inconvenience from it. – Mark Twain
Korisnikov avatar
Daniel  OFFLINE
Administrator
 
Postovi: 7305
Lokacija: Beograd
Zahvalio se: 3797 puta
Pohvaljen: 3953 puta

Re: Domen i kodomen

Postod Rebeka » Petak, 20. April 2018, 23:10

Postovani, ovo za domen mi je jasno, ali kodomen nikako da odradim... :besan:
Rebeka  OFFLINE
 
Postovi: 7
Zahvalio se: 2 puta
Pohvaljen: 1 puta

Re: Domen i kodomen

Postod Daniel » Petak, 20. April 2018, 23:35

I, kakav odgovor sad očekuješ na ovako postavljeno pitanje?
I do not fear death. I had been dead for billions and billions of years before I was born, and had not suffered the slightest inconvenience from it. – Mark Twain
Korisnikov avatar
Daniel  OFFLINE
Administrator
 
Postovi: 7305
Lokacija: Beograd
Zahvalio se: 3797 puta
Pohvaljen: 3953 puta

Re: Domen i kodomen

Postod Rebeka » Petak, 20. April 2018, 23:45

Malu smernicu.
Rebeka  OFFLINE
 
Postovi: 7
Zahvalio se: 2 puta
Pohvaljen: 1 puta

Re: Domen i kodomen

Postod Daniel » Petak, 20. April 2018, 23:47

Imaš smernice u prethodnim postovima.
I do not fear death. I had been dead for billions and billions of years before I was born, and had not suffered the slightest inconvenience from it. – Mark Twain
Korisnikov avatar
Daniel  OFFLINE
Administrator
 
Postovi: 7305
Lokacija: Beograd
Zahvalio se: 3797 puta
Pohvaljen: 3953 puta

Re: Domen i kodomen

Postod Rebeka » Petak, 20. April 2018, 23:50

Hvala lep na opsirnom odgovoru.
Rebeka  OFFLINE
 
Postovi: 7
Zahvalio se: 2 puta
Pohvaljen: 1 puta

Re: Domen i kodomen

Postod Daniel » Subota, 21. April 2018, 00:00

Kakvo je bilo tvoje pitanje, takav je i odgovor.
Imaš upozorenje pred ban zbog upornog kršenja tačke 11. Pravilnika.
Lock. :lock:
I do not fear death. I had been dead for billions and billions of years before I was born, and had not suffered the slightest inconvenience from it. – Mark Twain
Korisnikov avatar
Daniel  OFFLINE
Administrator
 
Postovi: 7305
Lokacija: Beograd
Zahvalio se: 3797 puta
Pohvaljen: 3953 puta


Povratak na FUNKCIJE

Ko je OnLine

Korisnici koji su trenutno na forumu: Nema registrovanih korisnika i 7 gostiju


Index stranicaTimObriši sve kolačiće boarda
Danas je Utorak, 16. Oktobar 2018, 18:45 • Sva vremena su u UTC + 1 sat [ DST ]
Pokreće ga phpBB® Forum Software © phpBB Group
Prevod – www.CyberCom.rs