Korisnički Kontrolni Panel
Pogledajte svoj profil
Pogledajte svoje postove
ČPP
Prijavite se

Matematički forum na kojem možete da diskutujete o raznim matematičkim oblastima, pomognete drugima oko rešavanja zadataka, a i da dobijete pomoć kada vam zatreba


















Index stranica MATEMATIČKA ANALIZA FUNKCIJE

Domen funkcije

[inlmath]f\left(x\right)=x^3+\ln\left|x+1\right|[/inlmath]

Domen funkcije

Postod Subject » Utorak, 02. Januar 2018, 19:05

Pozdrav.

Ako funkcija [inlmath]\ln x[/inlmath] vazi za [inlmath]x>0[/inlmath], ako umesto [inlmath]x[/inlmath] stavim recimo [inlmath]\cot^{-1}\left(\frac{x^3}{x^2+1}\right)[/inlmath], zasto je funkcija [inlmath]y=\ln\left(\cot^{-1}\left(\frac{x^3}{x^2+1}\right)\right)[/inlmath] definisana na [inlmath]\mathbb{R}[/inlmath]?
Meni je nekako logicno bilo da ispitujem funkciju [inlmath]y[/inlmath] na domenu [inlmath](0,\infty)[/inlmath], ali posle kada sam zavrsio grafik i pogledao resenje, video sam da mi fali jedan deo.

Da li to znaci da ako u imeniocu umesto [inlmath]x^2+1[/inlmath], stavimo [inlmath]x^2-1[/inlmath], da funkcija nece biti definisana samo na [inlmath]-1[/inlmath] i [inlmath]1[/inlmath]?
Interesuje me zasto je takav odnos [inlmath]\ln x[/inlmath] i trigonometrijskih funkcija? Da li ce drugaciji domen biti za [inlmath]\tan[/inlmath] ili [inlmath]\sin[/inlmath] umesto [inlmath]\cot^{-1}[/inlmath]?
"All we have to decide is what to do with the time that is given to us." - J.R.R.Tolkien
"Zivot nije vazniji od obraza." - Milorad Golijan
Korisnikov avatar
Subject  OFFLINE
 
Postovi: 55
Zahvalio se: 35 puta
Pohvaljen: 25 puta

Sharuj ovu temu na:

Share on Facebook Facebook Share on Twitter Twitter Share on MySpace MySpace Share on Google+ Google+
  • +1

Re: Domen funkcije

Postod Daniel » Sreda, 03. Januar 2018, 03:22

Pretpostaviću da [inlmath]\cot^{-1}x[/inlmath] znači [inlmath]\text{arcctg }x[/inlmath] (ne izgleda mi baš verovatno da znači [inlmath]\frac{1}{\text{ctg }x}[/inlmath]).

Domen funkcije [inlmath]\text{arcctg }x[/inlmath] je skup [inlmath]\mathbb{R}[/inlmath] (tj. definisana je za bilo koje realno [inlmath]x[/inlmath]), dok je njen kodomen interval [inlmath](0,\pi)[/inlmath], što znači da ne može dati ni negativnu, ni nultu vrednost, odakle sledi da će funkcija [inlmath]\ln\text{ctg }x[/inlmath] biti definisana za svako realno [inlmath]x[/inlmath].
Grafik funkcije [inlmath]\text{arcctg }x[/inlmath], sa kojeg se uočava i njen domen i njen kodomen, možeš videti pri kraju ovog posta.

Subject je napisao:Da li to znaci da ako u imeniocu umesto [inlmath]x^2+1[/inlmath], stavimo [inlmath]x^2-1[/inlmath], da funkcija nece biti definisana samo na [inlmath]-1[/inlmath] i [inlmath]1[/inlmath]?

Tako je.

Subject je napisao:Da li ce drugaciji domen biti za [inlmath]\tan[/inlmath] ili [inlmath]\sin[/inlmath] umesto [inlmath]\cot^{-1}[/inlmath]?

Biće potpuno drugačiji domen. Funkcija [inlmath]\text{tg }x[/inlmath], kao što znaš, nije definisana za [inlmath]x=\frac{\pi}{2}+k\pi[/inlmath] pa te tačke u startu ispadaju iz domena, dok takođe funkcija [inlmath]\ln(\text{tg }x)[/inlmath] neće biti definisana ni za sve one vrednosti za koje [inlmath]\text{tg }x[/inlmath] ima negativnu vrednost ili je nula.
Za sinus slično – sâm sinus je definisan na celom skupu [inlmath]\mathbb{R}[/inlmath], ali [inlmath]\ln(\sin x)[/inlmath] neće biti definisan za one vrednosti [inlmath]x[/inlmath] za koje je [inlmath]\sin x[/inlmath] negativan ili je nula.
I do not fear death. I had been dead for billions and billions of years before I was born, and had not suffered the slightest inconvenience from it. – Mark Twain
Korisnikov avatar
Daniel  OFFLINE
Administrator
 
Postovi: 7008
Lokacija: Beograd
Zahvalio se: 3635 puta
Pohvaljen: 3819 puta


Povratak na FUNKCIJE

Ko je OnLine

Korisnici koji su trenutno na forumu: Nema registrovanih korisnika i 8 gostiju


Index stranicaTimObriši sve kolačiće boarda
Danas je Nedelja, 27. Maj 2018, 17:35 • Sva vremena su u UTC + 1 sat [ DST ]
Pokreće ga phpBB® Forum Software © phpBB Group
Prevod – www.CyberCom.rs