Korisnički Kontrolni Panel
Pogledajte svoj profil
Pogledajte svoje postove
ČPP
Prijavite se

Matematički forum na kojem možete da diskutujete o raznim matematičkim oblastima, pomognete drugima oko rešavanja zadataka, a i da dobijete pomoć kada vam zatreba


















Index stranica MATEMATIČKA ANALIZA LIMESI

Klasifikacija tacaka i skupova, tacka nagomilavanja

[inlmath]\lim\limits_{x\to\infty}x\left(\sqrt{x^2+a^2}-x\right)[/inlmath]

Klasifikacija tacaka i skupova, tacka nagomilavanja

Postod Cisra » Utorak, 09. Februar 2016, 20:03

1. Ako je [inlmath]A=\bigl((0,1)\cap\mathbb{Q}\bigr)\cup\{3,6,7\}\cup(8,9][/inlmath], tada je unutrasnjost skupa [inlmath]=\bigl((0,1)\cap\mathbb{Q}\bigr)\cup(8,9)[/inlmath], adherencija [inlmath]=[0,1]\cup\{3,6,7\}\cup[8,9][/inlmath], rubne tacke [inlmath]=\{0,1,3,6,7,8,9\}[/inlmath], skup izolovanih tacaka [inlmath]=\{3,6,7\}[/inlmath], a skup tacaka nagomilavanja [inlmath]=[0,1]\cup[8,9][/inlmath].

Da li neko moze da mi kaze da li sam dobro resio zadatak?

I da li bi neko mogao da mi objasni ovaj, naslucujem da treba da se radi prema definiciji tacke nagomiljavanja niza:

2. Ako je [inlmath]1[/inlmath] tacka nagomilavanja niza [inlmath]\{a_n\}\subset\mathbb{R}[/inlmath], tada postoji prirodan broj [inlmath]n>50[/inlmath] tako da [inlmath]\{a_n\}\in L\left(1,\frac{1}{2}\right)[/inlmath]
Cisra  OFFLINE
 
Postovi: 18
Lokacija: Novi Sad
Zahvalio se: 13 puta
Pohvaljen: 0 puta

Sharuj ovu temu na:

Share on Facebook Facebook Share on Twitter Twitter Share on MySpace MySpace Share on Google+ Google+
  • +1

Re: Klasifikacija tacaka i skupova, tacka nagomilavanja

Postod Onomatopeja » Sreda, 10. Februar 2016, 15:27

Kada pricamo o ovakvim stvarima, onda je potrebno naglasiti u kom metrickom prostoru radimo i kako je tu metrika zadata (pretpostavljam da ipak radimo sve na nivou metrickih, a ne topoloskih prostora). Ja pretpostavljam da je ovde [inlmath]M=\mathbb{R}[/inlmath], a da je metrika ona standardna nad realnim brojevima zadata sa apsolutnom vrednoscu.

U redu, ako je to zaista tako (a ne znam), onda [inlmath]\text{int }\!\:\!A[/inlmath] (interior od [inlmath]A[/inlmath]) nije dobro odredjen, a time ni skup rubnih tacaka (u oznaci [inlmath]\partial A[/inlmath]). Naime, ako uzmemo proizvoljnu tacku [inlmath]r\in(0,1)\cap\mathbb{Q}[/inlmath] i ako zelimo da [inlmath]r\in\text{int }\!\:\!A[/inlmath], to onda mora postojati [inlmath]\varepsilon>0[/inlmath] takvo da [inlmath](r-\varepsilon,r+\varepsilon)\subseteq A[/inlmath]. No, takvo epsilon ne postoji, jer koliko god proizvoljno malo da se vrdnemo levo ili desno sa nekim intervalom, taj inverval mora sadrzati i neki iracionalan broj (jer su oni gusti u [inlmath]\mathbb{R}[/inlmath]), te onda za tacku [inlmath]\{r\}[/inlmath] ne postoji okolina koja je sadrzana u [inlmath]A[/inlmath].

Za ovo drugo pitanje nije jasno sta predstavlja [inlmath]L(1,\frac{1}{2})[/inlmath].
 
Postovi: 588
Zahvalio se: 15 puta
Pohvaljen: 555 puta

Re: Klasifikacija tacaka i skupova, tacka nagomilavanja

Postod Cisra » Sreda, 10. Februar 2016, 20:11

Jeste tako je kako si rekao [inlmath]M=\mathbb{R}[/inlmath], a metrika je standardna. Onda koliko sam shvatio unutrasnjost bi bila: [inlmath](8,9)[/inlmath], a skup rubnih tacaka: [inlmath]\{3,6,7,8,9\}[/inlmath]

[inlmath]L(1,\frac{1}{2})[/inlmath]
[inlmath]1[/inlmath] bi bila tacka nagomilavanja, a [inlmath]\frac{1}{2}[/inlmath] predstavlja [inlmath]\varepsilon[/inlmath].
Odnosno otvorena lopta u tacki [inlmath]1[/inlmath] poluprecnika [inlmath]\frac{1}{2}[/inlmath]
Cisra  OFFLINE
 
Postovi: 18
Lokacija: Novi Sad
Zahvalio se: 13 puta
Pohvaljen: 0 puta

  • +1

Re: Klasifikacija tacaka i skupova, tacka nagomilavanja

Postod Onomatopeja » Četvrtak, 11. Februar 2016, 12:22

Dobro si odredio unutrasnjost, vec sam ti rekao da je dobro odredjena adherencija skupa, ali nisi dobro odredio skup rubnih tacaka (sto je lako, ako znamo ova dva prethodna skupa).

Za drugi, sam „dokaz“ (pod navodnicima je, jer tu i nema sta puno da se dokazuje) zavisi od toga kako ste definisali tacku nagomilavanja niza. Takodje, trebalo je da napises [inlmath]a_n\in L(1,\frac{1}{2})[/inlmath] (dakle, bez viticastih zagrada).

Inace, ja prvi put vidim da neko tako oznacava otvorenu loptu (jasna mi je asocijacija L kao lopta), jer obicno se koristi [inlmath]B(1,\frac{1}{2})[/inlmath] (B kao ball) ili [inlmath]K(1,\frac{1}{2})[/inlmath] (K kao kugla (dakle, ako vec hocemo po naški onda se obicno ide sa ovom varijantom)) ili [inlmath]D(1,\frac{1}{2})[/inlmath] (D kao disk (disc)).
 
Postovi: 588
Zahvalio se: 15 puta
Pohvaljen: 555 puta

Re: Klasifikacija tacaka i skupova, tacka nagomilavanja

Postod Boba R. » Utorak, 13. Novembar 2018, 13:23

Je li u ovom primjeru unutrašnjost skupa [inlmath](0,1)[/inlmath] ili [inlmath](0,1)\cup(8,9)[/inlmath]?
Boba R.  OFFLINE
 
Postovi: 5
Zahvalio se: 4 puta
Pohvaljen: 0 puta


Povratak na LIMESI

Ko je OnLine

Korisnici koji su trenutno na forumu: Nema registrovanih korisnika i 1 gost


Index stranicaTimObriši sve kolačiće boarda
Danas je Petak, 14. Decembar 2018, 19:54 • Sva vremena su u UTC + 1 sat
Pokreće ga phpBB® Forum Software © phpBB Group
Prevod – www.CyberCom.rs