Korisnički Kontrolni Panel
Pogledajte svoj profil
Pogledajte svoje postove
ČPP
Prijavite se

Matematički forum na kojem možete da diskutujete o raznim matematičkim oblastima, pomognete drugima oko rešavanja zadataka, a i da dobijete pomoć kada vam zatreba


















Index stranica MATEMATIČKA ANALIZA LIMESI

Resavanje limesa sa 1^∞

[inlmath]\lim\limits_{x\to\infty}x\left(\sqrt{x^2+a^2}-x\right)[/inlmath]

Resavanje limesa sa 1^∞

Postod bakisa » Ponedeljak, 27. Januar 2020, 12:51

Pozdrav,
Da li neko moze da objasni kako bih resio ovaj problem i da mi posalje neka pravila/materijale za resavanja slicnih problema?
[dispmath]\lim_{x\to0}\left(\sin x+\cos x\right)^\frac{1}{x^2}[/dispmath] Hvala!
bakisa  OFFLINE
 
Postovi: 2
Zahvalio se: 2 puta
Pohvaljen: 0 puta

Sharuj ovu temu na:

Share on Facebook Facebook Share on Twitter Twitter Share on MySpace MySpace Share on Google+ Google+
  • +2

Re: Resavanje limesa sa 1^∞

Postod primus » Ponedeljak, 27. Januar 2020, 13:42

Upotrebi sledeću jednakost: [inlmath]\displaystyle\lim_{x\to0}f(x)=\lim_{x\to0}e^{\ln(f(x))}=e^{\displaystyle\lim_{x\to0}\ln(f(x))}[/inlmath] i logaritamsko pravilo [inlmath]\ln a^n=n\cdot\ln a[/inlmath], a potom primeni Lopitalovo pravilo.
Plenus venter non studet libenter
Korisnikov avatar
primus  OFFLINE
 
Postovi: 93
Zahvalio se: 4 puta
Pohvaljen: 110 puta

Re: Resavanje limesa sa 1^∞

Postod bakisa » Ponedeljak, 27. Januar 2020, 22:09

Dolazim do ovoga:
[dispmath]e^{\displaystyle\lim_{x\to0}\left(\frac{\cos x-\sin x}{2x\left(\sin x+\cos x\right)}\right)}[/dispmath] Ali mi i dalje smeta [inlmath]x[/inlmath] u imeniocu, posto se dobija [inlmath]e^\infty[/inlmath], a ne znam kako da ga se otarasim.
Da li postoji jos neko pravilo koje mogu da primenim ili je [inlmath]\infty[/inlmath] resenje zadatka?
bakisa  OFFLINE
 
Postovi: 2
Zahvalio se: 2 puta
Pohvaljen: 0 puta

  • +2

Re: Resavanje limesa sa 1^∞

Postod primus » Utorak, 28. Januar 2020, 06:32

bakisa je napisao:Dolazim do ovoga:
[dispmath]e^{\displaystyle\lim_{x\to0}\left(\frac{\cos x-\sin x}{2x\left(\sin x+\cos x\right)}\right)}[/dispmath]

Dobio si ispravan izraz. Sad posmatraj dva slučaja: kad [inlmath]x\to0^-[/inlmath] i kad [inlmath]x\to0^+[/inlmath].
Plenus venter non studet libenter
Korisnikov avatar
primus  OFFLINE
 
Postovi: 93
Zahvalio se: 4 puta
Pohvaljen: 110 puta

Re: Resavanje limesa sa 1^∞

Postod Daniel » Nedelja, 02. Februar 2020, 02:43

Često se u zadacima traži da se limes reši bez upotrebe Lopitalovog pravila (što je i razumljivo, jer raditi Lopitalovim pravilom je jednostavno, kao i voziti autoputem, ali treba naučiti voziti i po sokacima :) ), tako da nije zgoreg znati i drugi način.
Kad imamo ovakve limese tima [inlmath]1^\infty[/inlmath], to se obično može svesti na neki od ona dva karakteristična limesa koji iznose [inlmath]e[/inlmath]:
  • [inlmath]\lim\limits_{n\to\infty}\left(1+\frac{1}{n}\right)^n[/inlmath]
  • [inlmath]\lim\limits_{n\to0}(1+n)^\frac{1}{n}[/inlmath]
Konkretno u ovom zadatku, zadati limes je zgodnije svesti na [inlmath]\lim\limits_{n\to0}(1+n)^\frac{1}{n}[/inlmath], tako što se on malo transformiše:
[dispmath]\lim_{x\to0}\bigl(1+(\sin x+\cos x-1)\bigr)^{\Large\frac{1}{x^2}}[/dispmath] Ovo smo uradili zato da bismo unutar zagrade imali jedan plus nešto što teži nuli (ovo što teži nuli je izraz [inlmath]\sin x+\cos x-1[/inlmath]).
Zatim, da bismo sveli na oblik [inlmath](1+n)^\frac{1}{n}[/inlmath], eksponent pomnožimo i podelimo sa [inlmath]\sin x+\cos x-1[/inlmath]:
[dispmath]\lim_{x\to0}\bigl(1+(\sin x+\cos x-1)\bigr)^{\Large\frac{1}{\sin x+\cos x-1}\cdot\frac{\sin x+\cos x-1}{x^2}}[/dispmath] što je jednako, koristeći pravilo [inlmath]a^{bc}=\left(a^b\right)^c[/inlmath],
[dispmath]\lim_{x\to0}\Bigl(\bigl(1+(\sin x+\cos x-1)\bigr)^{\Large\frac{1}{\sin x+\cos x-1}}\Bigr)^{\Large\frac{\sin x+\cos x-1}{x^2}}\\
\lim_{x\to0}\Bigl(\bigl(1+(\sin x+\cos x-1)\bigr)^{\Large\frac{1}{\sin x+\cos x-1}}\Bigr)^{{\large\lim\limits_{x\to0}}\Large\frac{\sin x+\cos x-1}{x^2}}[/dispmath] Pošto, kada [inlmath]x\to0[/inlmath], izraz [inlmath]\sin x+\cos x-1[/inlmath] teži nuli, ceo izraz [inlmath]\bigl(1+(\sin x+\cos x-1)\bigr)^{\Large\frac{1}{\sin x+\cos x-1}}[/inlmath] će težiti broju [inlmath]e[/inlmath] (jer će biti oblika [inlmath](1+n)^\frac{1}{n}[/inlmath], gde [inlmath]n[/inlmath] teži nuli), tako da limes postaje
[dispmath]e\,^{{\large\lim\limits_{x\to0}}\Large\frac{\sin x+\cos x-1}{x^2}}[/dispmath] Sad je dalje lako, [inlmath]\sin x[/inlmath] se napiše kao [inlmath]2\sin\frac{x}{2}\cos\frac{x}{2}[/inlmath], [inlmath]1-\cos x[/inlmath] se napiše kao [inlmath]2\sin^2\frac{x}{2}[/inlmath], a [inlmath]x[/inlmath] se napiše kao [inlmath]2\cdot\frac{x}{2}[/inlmath], i iskoristimo to što [inlmath]\frac{x}{2}[/inlmath] teži nuli.
A ako ti je lakše, možeš umesto toga uvesti smenu [inlmath]x=2t[/inlmath]...

I, kao što primus napomenu, neće biti ista vrednost limesa za [inlmath]x\to0^-[/inlmath] i za [inlmath]x\to0^+[/inlmath], tako da treba razmotriti oba slučaja.
I do not fear death. I had been dead for billions and billions of years before I was born, and had not suffered the slightest inconvenience from it. – Mark Twain
Korisnikov avatar
Daniel  OFFLINE
Administrator
 
Postovi: 8309
Lokacija: Beograd
Zahvalio se: 4422 puta
Pohvaljen: 4426 puta


Povratak na LIMESI

Ko je OnLine

Korisnici koji su trenutno na forumu: Nema registrovanih korisnika i 3 gostiju


Index stranicaTimObriši sve kolačiće boarda
Danas je Subota, 11. Jul 2020, 22:19 • Sva vremena su u UTC + 1 sat [ DST ]
Pokreće ga phpBB® Forum Software © phpBB Group
Prevod – www.CyberCom.rs