Korisnički Kontrolni Panel
Pogledajte svoj profil
Pogledajte svoje postove
ČPP
Prijavite se

Matematički forum na kojem možete da diskutujete o raznim matematičkim oblastima, pomognete drugima oko rešavanja zadataka, a i da dobijete pomoć kada vam zatreba


















Index stranica MATEMATIČKA ANALIZA IZVODI FUNKCIJA

Izvod funkcije – probni prijemni ETF 2017.

[inlmath]\left(x^n\right)'=nx^{n-1}[/inlmath]
  • +1

Izvod funkcije – probni prijemni ETF 2017.

Postod kazinski » Utorak, 12. Jun 2018, 14:40

Probni prijemni ispit ETF - 10. jun 2017.
9. zadatak


Data je funkcija [inlmath]f(x)=\sqrt{\frac{\sqrt x+1}{\sqrt x-1}}[/inlmath]. Tada je vrednost [inlmath]f'(4)[/inlmath] jednaka? -Rešenje: [inlmath]\enclose{box}{-\frac{\sqrt3}{12}}[/inlmath]

Možemo racionalisati unutar korena:
[dispmath]f(x)=\sqrt{\frac{\left(\sqrt x+1\right)^2}{x-1}}=\left(\sqrt x+1\right)(x-1)^{-\frac{1}{2}}[/dispmath] Sada primenimo pravilo:
[dispmath](a\cdot b)'=a'b+ab'\\
f'(x)=\left(\sqrt x+1\right)'(x-1)^{-\frac{1}{2}}+\left(\sqrt x+1\right)\left((x-1)^{-\frac{1}{2}}\right)'\\
f'(x)=\frac{1}{2\sqrt x\sqrt{(x-1)}}-\frac{\sqrt x+1}{2\sqrt{(x-1)^3}}\;\Longrightarrow\;f'(4)=-\frac{\sqrt3}{12}[/dispmath]
Korisnikov avatar
 
Postovi: 24
Zahvalio se: 14 puta
Pohvaljen: 17 puta

Sharuj ovu temu na:

Share on Facebook Facebook Share on Twitter Twitter Share on MySpace MySpace Share on Google+ Google+
  • +1

Re: Izvod funkcije – probni prijemni ETF 2017.

Postod Daniel » Sreda, 13. Jun 2018, 00:18

Sasvim ispravan postupak, a može se raditi i bez racionalizacije potkorene veličine, preko izvoda složene funkcije:
[dispmath]\begin{align}
f'(x)&=\left(\sqrt{\frac{\sqrt x+1}{\sqrt x-1}}\right)'\\
&=\frac{1}{2\sqrt{\frac{\sqrt x+1}{\sqrt x-1}}}\cdot\left(\frac{\sqrt x+1}{\sqrt x-1}\right)'\\
&=\frac{1}{2\sqrt{\frac{\sqrt x+1}{\sqrt x-1}}}\cdot\frac{\left(\sqrt x+1\right)'\left(\sqrt x-1\right)-\left(\sqrt x+1\right)\left(\sqrt x-1\right)'}{\left(\sqrt x-1\right)^2}\\
&=\frac{1}{2\sqrt{\frac{\sqrt x+1}{\sqrt x-1}}}\cdot\frac{\frac{1}{2\sqrt x}\left(\sqrt x-1\right)-\frac{1}{2\sqrt x}\left(\sqrt x+1\right)}{\left(\sqrt x-1\right)^2}
\end{align}[/dispmath] Sad se, naravno, to može srediti, a koga mrzi da sređuje može odmah u ovaj izraz i uvrstiti [inlmath]\sqrt x=2[/inlmath]...
I do not fear death. I had been dead for billions and billions of years before I was born, and had not suffered the slightest inconvenience from it. – Mark Twain
Korisnikov avatar
Daniel  OFFLINE
Administrator
 
Postovi: 7199
Lokacija: Beograd
Zahvalio se: 3735 puta
Pohvaljen: 3917 puta


Povratak na IZVODI FUNKCIJA

Ko je OnLine

Korisnici koji su trenutno na forumu: Nema registrovanih korisnika i 2 gostiju


Index stranicaTimObriši sve kolačiće boarda
Danas je Ponedeljak, 23. Jul 2018, 11:41 • Sva vremena su u UTC + 1 sat [ DST ]
Pokreće ga phpBB® Forum Software © phpBB Group
Prevod – www.CyberCom.rs