Korisnički Kontrolni Panel
Pogledajte svoj profil
Pogledajte svoje postove
ČPP
Prijavite se

Matematički forum na kojem možete da diskutujete o raznim matematičkim oblastima, pomognete drugima oko rešavanja zadataka, a i da dobijete pomoć kada vam zatreba


















Index stranica MATEMATIČKA ANALIZA DIFERENCIJALNE JEDNAČINE

Integralna kriva date diferencijalne jednačine

[inlmath]\left(1+x\right)y\mathrm dx+\left(1-y\right)x\mathrm dy=0[/inlmath]

Integralna kriva date diferencijalne jednačine

Postod Ilija » Subota, 02. Septembar 2017, 15:33

Pozdrav svima. Imam problem sa jednim zadatkom sa roka. Naime, u zbirci se daje samo konačno rešenje, a ne vidim da smo na vežbama prošli ovakav zadatak. U knjizi iz analize postoji svega par relativno sličnih, ali ne mogu da ukapiram kako se kasnije postave uslovi za odredjivanje integralne krive.



Zadatak:
Naći onu integralnu krivu diferencijalne jednačine [inlmath]y''-4y=4e^{-2x}[/inlmath] koja ima desnu horizontalnu asimptotu i koja u tački preseka sa [inlmath]y[/inlmath]-osom ima tangentu paralelnu pravoj [inlmath]y=x[/inlmath].
Rešenje:
[inlmath]y=-e^{-2x}(1+x)[/inlmath].

Okej, resim jednačinu i dobijem
[dispmath]y=c_1e^{2x}+c_2e^{-2x}-xe^{-2x}=c_1e^{2x}+(c_2-x)e^{-2x}[/dispmath] Pošto se kaže da ta kriva ima desnu horizontalnu asimptotu, da bi limes uopšte postojao konstanta [inlmath]c_1[/inlmath] mora biti nula, kada je i sam limes jednak nuli, za svako [inlmath]c_2\in\mathbb{R}[/inlmath]. Dalje, tačka preseka krive i [inlmath]y[/inlmath]-ose je [inlmath](0,c_2)[/inlmath], pa sledi da je tangenta, koja je paralelna sa pravom [inlmath]y=x[/inlmath], oblika [inlmath]y_t=x+c_2[/inlmath]. Znamo i to da je jednačina tangente na krivu jednaka i [inlmath]y-y_0=y'(x_0)(x-x0)[/inlmath], što bi u našem slučaju bilo:
[dispmath]y_t=-x+c_2(1-2x)[/dispmath] Sad uporedimo oba izraza za tangentu i dobijemo koliko je [inlmath]c_2[/inlmath]:
[dispmath]x+c_2=-x+c_2(1-2x)\\
\vdots
\\ c_2=-1[/dispmath]
I na kraju imamo da je tangenta krive [inlmath]y_t=x-1[/inlmath], a tražena integralna kriva [inlmath]y=-e^{-2x}(1+x)[/inlmath].



Zanima me da li je postupak tačan, da li se ovo uopšte rešava na ovakav način i da li postoji neko lakše rešenje (u smislu univerzalnije/neki šablon)? :) :thumbs:
If you are prepared, you will be confident and will do the job.
Korisnikov avatar
Ilija  OFFLINE
Zaslužni forumaš
 
Postovi: 497
Zahvalio se: 168 puta
Pohvaljen: 430 puta

Sharuj ovu temu na:

Share on Facebook Facebook Share on Twitter Twitter Share on MySpace MySpace Share on Google+ Google+
  • +1

Re: Integralna kriva date diferencijalne jednačine

Postod Daniel » Subota, 02. Septembar 2017, 15:53

Pozdrav. Da, rešava se tako, s tim što se ovaj deo s tangentom može i jednostavnije uraditi. Nema potrebe određivati tačku preseka krive i [inlmath]y[/inlmath]-ose, niti jednačinu tangente. Dovoljno je iz podatka da kriva u tački preseka s [inlmath]y[/inlmath]-osom ima tangentu paralelnu pravoj [inlmath]y=x[/inlmath] zaključiti da će za [inlmath]x=0[/inlmath] izvod tražene funkcije biti jednak [inlmath]1[/inlmath]. Pošto do tog trenutka znamo da je [inlmath]y=(c_2-x)e^{-2x}[/inlmath], izvod će biti [inlmath]y'=-e^{-2x}-2(c_2-x)e^{-2x}[/inlmath], pa kad uvrstimo [inlmath]x=0[/inlmath] dobije se [inlmath]y'(0)=-1-2c_2=1[/inlmath] i odatle [inlmath]c_2=-1[/inlmath].
I do not fear death. I had been dead for billions and billions of years before I was born, and had not suffered the slightest inconvenience from it. – Mark Twain
Korisnikov avatar
Daniel   ONLINE
Administrator
 
Postovi: 6664
Lokacija: Beograd
Zahvalio se: 3481 puta
Pohvaljen: 3675 puta


Povratak na DIFERENCIJALNE JEDNAČINE

Ko je OnLine

Korisnici koji su trenutno na forumu: Nema registrovanih korisnika i 1 gost


Index stranicaTimObriši sve kolačiće boarda
Danas je Četvrtak, 23. Novembar 2017, 11:57 • Sva vremena su u UTC + 1 sat
Pokreće ga phpBB® Forum Software © phpBB Group
Prevod – www.CyberCom.rs