Korisnički Kontrolni Panel
Pogledajte svoj profil
Pogledajte svoje postove
ČPP
Prijavite se

Matematički forum na kojem možete da diskutujete o raznim matematičkim oblastima, pomognete drugima oko rešavanja zadataka, a i da dobijete pomoć kada vam zatreba


















Index stranica MATEMATIČKA ANALIZA DIFERENCIJALNE JEDNAČINE

Diferencijalna jednačina drugog reda

[inlmath]\left(1+x\right)y\mathrm dx+\left(1-y\right)x\mathrm dy=0[/inlmath]

Diferencijalna jednačina drugog reda

Postod filiplukic036 » Ponedeljak, 07. Oktobar 2019, 02:13

Da li biste mogli da mi pomognete da rešim sledeću diferencijalnu jednacinu: :kojik: :kojik: :kojik:
[dispmath]\frac{\partial^2y}{\partial x^2}=\sqrt{1+\left(\frac{\partial y}{\partial x}\right)^2}[/dispmath]
Poslednji put menjao Daniel dana Ponedeljak, 07. Oktobar 2019, 02:38, izmenjena samo jedanput
Razlog: Dopuna naziva teme
 
Postovi: 3
Zahvalio se: 0 puta
Pohvaljen: 0 puta

Sharuj ovu temu na:

Share on Facebook Facebook Share on Twitter Twitter Share on MySpace MySpace Share on Google+ Google+

Re: Diferencijalna jednačina drugog reda

Postod Daniel » Ponedeljak, 07. Oktobar 2019, 02:39

Budući da u jednačini figurišu samo [inlmath]y''[/inlmath] i [inlmath]y'[/inlmath], ovo možeš svesti na diferencijalnu jednačinu prvog reda smenom [inlmath]y'=z[/inlmath]. To bi trebalo da ti dâ neku početnu ideju.

Ubuduće, molim te, tačka 6. Pravilnika.
I do not fear death. I had been dead for billions and billions of years before I was born, and had not suffered the slightest inconvenience from it. – Mark Twain
Korisnikov avatar
Daniel  OFFLINE
Administrator
 
Postovi: 7728
Lokacija: Beograd
Zahvalio se: 4057 puta
Pohvaljen: 4120 puta

Re: Diferencijalna jednačina drugog reda

Postod filiplukic036 » Ponedeljak, 07. Oktobar 2019, 12:01

Da, to je upravo ono što sam uradio, ali kada dodjem do dela kada je potrebno vratiti smenu, tu zastanem. Dakle, do sledeće jednakosti sam došao:
[dispmath]z=\frac{\text{arcsinh}(z)+z\sqrt{z^2+1}}{2}+C[/dispmath]
 
Postovi: 3
Zahvalio se: 0 puta
Pohvaljen: 0 puta

Re: Diferencijalna jednačina drugog reda

Postod Daniel » Ponedeljak, 07. Oktobar 2019, 13:27

Nije ti tu nešto dobro. Bi li pokazao kako si dotle došao?
I do not fear death. I had been dead for billions and billions of years before I was born, and had not suffered the slightest inconvenience from it. – Mark Twain
Korisnikov avatar
Daniel  OFFLINE
Administrator
 
Postovi: 7728
Lokacija: Beograd
Zahvalio se: 4057 puta
Pohvaljen: 4120 puta

Re: Diferencijalna jednačina drugog reda

Postod filiplukic036 » Ponedeljak, 07. Oktobar 2019, 14:55

Evo kako sam radio, mada nisam siguran da je sve tacno:
[dispmath]z'=\sqrt{1+z^2},[/dispmath] nakon integraljenja
[dispmath]z=\int\sqrt{1+z^2}\,\mathrm dz[/dispmath] uvodjenje smene
[dispmath]z=\sinh(u);\;u=\text{arcsinh}(z);\;\mathrm dz=\cosh(u)\,\mathrm du\\
z=\int\sqrt{1+\sinh^2(u)}\cosh(u)\,\mathrm du\\
z=\int\cosh^2(u)\,\mathrm du,[/dispmath] redukciona formula
[dispmath]z=\int\frac{1}{2}\,\mathrm du+\frac{\cosh(u)\sinh(u)}{2}\\
z=\frac{\text{arcsinh}(z)}{2}+\frac{\cosh\bigl(\text{arcsinh}(z)\bigr)\sinh\bigl(\text{arcsinh}(z)\bigr)}{2}\\
z=\frac{\text{arcsinh}(z)}{2}+\frac{z\sqrt{z^2+1}}{2}[/dispmath] Ni meni ne deluje da je to dobro :sad3: :sad3: :kojik: ... ako mozete ukazite mi gde pravim gresku.
Poslednji put menjao Daniel dana Utorak, 08. Oktobar 2019, 00:04, izmenjena samo jedanput
Razlog: Korekcija Latexa
 
Postovi: 3
Zahvalio se: 0 puta
Pohvaljen: 0 puta

Re: Diferencijalna jednačina drugog reda

Postod Daniel » Utorak, 08. Oktobar 2019, 00:06

Greška ti je u samom startu:
filiplukic036 je napisao:nakon integraljenja
[dispmath]z=\int\sqrt{1+z^2}\,\mathrm d{\color{red}z}[/dispmath]

Naime, pošto krećeš od [inlmath]z'=\sqrt{1+z^2}[/inlmath], to je zapravo isto što i
[dispmath]\frac{\mathrm dz}{\mathrm dx}=\sqrt{1+z^2}[/dispmath] pa onda, kad [inlmath]\mathrm dx[/inlmath] pređe na desnu stranu i kad se integrali, dobije se
[dispmath]\int\sqrt{1+z^2}\,\mathrm d{\color{red}x}[/dispmath] Dakle, ne [inlmath]\mathrm dz[/inlmath], već [inlmath]\mathrm dx[/inlmath]. Samim tim, ne mogu se uvoditi smene koje si ti uveo.



Ovde se može vrlo jednostavno uočiti da, ako je [inlmath]z(x)=\sinh x[/inlmath] (izraz [inlmath]\sqrt{1+z^2}[/inlmath] nekako nas „vuče“ na to), tada će leva strana jednačine [inlmath]z'=\sqrt{1+z^2}[/inlmath] biti jednaka [inlmath]\cosh x[/inlmath], a i desna strana jednačine će biti jednaka [inlmath]\cosh x[/inlmath], tj. obe strane će biti jednake, tj. jednačina će biti zadovoljena...
I do not fear death. I had been dead for billions and billions of years before I was born, and had not suffered the slightest inconvenience from it. – Mark Twain
Korisnikov avatar
Daniel  OFFLINE
Administrator
 
Postovi: 7728
Lokacija: Beograd
Zahvalio se: 4057 puta
Pohvaljen: 4120 puta


Povratak na DIFERENCIJALNE JEDNAČINE

Ko je OnLine

Korisnici koji su trenutno na forumu: Nema registrovanih korisnika i 2 gostiju


Index stranicaTimObriši sve kolačiće boarda
Danas je Ponedeljak, 14. Oktobar 2019, 19:44 • Sva vremena su u UTC + 1 sat [ DST ]
Pokreće ga phpBB® Forum Software © phpBB Group
Prevod – www.CyberCom.rs