Korisnički Kontrolni Panel
Pogledajte svoj profil
Pogledajte svoje postove
ČPP
Prijavite se

Matematički forum na kojem možete da diskutujete o raznim matematičkim oblastima, pomognete drugima oko rešavanja zadataka, a i da dobijete pomoć kada vam zatreba


















Index stranica OSTALE MATEMATIČKE OBLASTI GEOMETRIJA

Rotacija pravouglog trougla – prijemni ETF 2019.

[inlmath]\triangle ABC\sim\triangle A'B'C'[/inlmath]

Moderator: Corba248

Rotacija pravouglog trougla – prijemni ETF 2019.

Postod Jovan111 » Utorak, 09. Jul 2019, 16:25

Prijemni ispit ETF – 24. jun 2019.
12. zadatak


Rotacijom pravouglog trougla, koji nije jednakokraki, oko hipotenuze formirano je obrtno telo [inlmath]T_1[/inlmath], a rotacijom oko duže katete obrtno telo [inlmath]T_2[/inlmath]. Ako je [inlmath]\alpha[/inlmath] najmanji ugao datog trougla, onda je odnos zapremina tela [inlmath]T_1[/inlmath] i [inlmath]T_2[/inlmath] jednak:
[inlmath]A)\;\sin\alpha;\quad[/inlmath] [inlmath]\enclose{circle}{B)}\;\cos\alpha;\quad[/inlmath] [inlmath]C)\;\text{ctg }\alpha;\quad[/inlmath] [inlmath]D)\;\displaystyle\frac{1}{\cos\alpha};\quad[/inlmath] [inlmath]E)\;\displaystyle\frac{1}{\sin\alpha}.[/inlmath]



Neka je dat pravougli trougao sa stranicama [inlmath]a[/inlmath], [inlmath]b[/inlmath] i [inlmath]c[/inlmath], pri čemu je [inlmath]c[/inlmath] hipotenuza i [inlmath]a[/inlmath] kraća kateta. Na osnovu slike (telo [inlmath]T_1[/inlmath]) može se zaključiti da je zapremina tela [inlmath]T_1[/inlmath] zbir zapremina dve kupe visina [inlmath]x[/inlmath] i [inlmath]y[/inlmath] sa zajedničkom osnovom, čiji je poluprečnik [inlmath]h_c[/inlmath]. Prema tome imamo da je zapremina tela [inlmath]T_1[/inlmath]:
[dispmath]V_1=\frac{1}{3}B_1x+\frac{1}{3}B_1y=\frac{1}{3}B_1(x+y)=\frac{1}{3}B_1c[/dispmath] gde je [inlmath]B_1=h_c^2\pi=(b\sin\alpha)^2\pi[/inlmath], pa imamo:
[dispmath]V_1=\frac{1}{3}b^2\sin^2\alpha\cdot\pi c[/dispmath]
telo T_1.PNG
telo T_1.PNG (11.67 KiB) Pogledano 63 puta

Na osnovu slike (telo [inlmath]T_2[/inlmath]) može se zaključiti da je zapremina tela [inlmath]T_2[/inlmath] ujedno zapremina kupe čija je visina jednaka stranici [inlmath]b[/inlmath], dok joj je osnova [inlmath]B_2=a^2\pi[/inlmath], te imamo:
[dispmath]V_2=\frac{1}{3}B_2b=\frac{1}{3}a^2\pi b[/dispmath]
telo T_2.PNG
telo T_2.PNG (11.71 KiB) Pogledano 63 puta

Prema tome, odnos zapremina tela [inlmath]T_1[/inlmath] i [inlmath]T_2[/inlmath] je:
[dispmath]\frac{V_1}{V_2}=\frac{b^2\sin^2\alpha\cdot\cancel{\pi}c}{a^2\cancel{\pi}b}[/dispmath] gde je [inlmath]\frac{b}{a}=\text{ctg }\alpha=\frac{\cos\alpha}{\sin\alpha}[/inlmath], te imamo:
[dispmath]\frac{V_1}{V_2}=\frac{\cos^2\alpha\cancel{\sin^2\alpha}\cdot c}{\cancel{\sin^2\alpha}\cdot b}=\cos^2\alpha\cdot\left(\frac{b}{c}\right)^{-1}=\cos^{\cancel2}\alpha\cdot\frac{1}{\cancel{\cos\alpha}}=\cos\alpha[/dispmath]
Korisnikov avatar
Moderator
 
Postovi: 135
Zahvalio se: 45 puta
Pohvaljen: 156 puta

Sharuj ovu temu na:

Share on Facebook Facebook Share on Twitter Twitter Share on MySpace MySpace Share on Google+ Google+

Re: Rotacija pravouglog trougla – prijemni ETF 2019.

Postod Stefan Boricic » Utorak, 09. Jul 2019, 16:43

Veoma lepo objašnjen zadatak!
Mathematics is the language with which God wrote the universe. — Galileo
 
Postovi: 36
Zahvalio se: 12 puta
Pohvaljen: 8 puta


Povratak na GEOMETRIJA

Ko je OnLine

Korisnici koji su trenutno na forumu: Nema registrovanih korisnika i 5 gostiju


Index stranicaTimObriši sve kolačiće boarda
Danas je Petak, 23. Avgust 2019, 17:12 • Sva vremena su u UTC + 1 sat [ DST ]
Pokreće ga phpBB® Forum Software © phpBB Group
Prevod – www.CyberCom.rs