Korisnički Kontrolni Panel
Pogledajte svoj profil
Pogledajte svoje postove
ČPP
Prijavite se

Matematički forum na kojem možete da diskutujete o raznim matematičkim oblastima, pomognete drugima oko rešavanja zadataka, a i da dobijete pomoć kada vam zatreba


















Index stranica MATEMATIČKA ANALIZA OSTALE OBLASTI ANALIZE

Pomoc oko razumevanja aksiome neprekidnosti

Sve što spada u matematićku analizu a ne spada u prethodno nabrojane rubrike

Pomoc oko razumevanja aksiome neprekidnosti

Postod lowzyyy » Subota, 17. Oktobar 2015, 20:38

Pozdrav, od kako sam krenuo na fakultet mnogima pa i meni nije jasno dosta stvari iz Matematicke analize 1. Ne znam koliko sam siguran da sam otovrio temu na dobrom mestu, ali nisam znao gde.
Problem je sto ne razumem dokaz iz kako skup [inlmath]\mathbb{Q}[/inlmath] ne zadovoljava ovu aksiomu. Sam tekst mi nije jasan od pocetka gde kaze da treba da se dokaze da ne postoji broj [inlmath]z[/inlmath] koji zadovoljava
[dispmath]x\le z\le y[/dispmath]
pri cemu je
[inlmath]A=\left\{x\in\mathbb{Q}\;\left|\;x^2<2\right.\right\}[/inlmath]
[inlmath]B=\left\{x\in\mathbb{Q}\;\left|\;x\ge0,\;x^2>2\right.\right\}[/inlmath]
[inlmath]x\in A[/inlmath] i [inlmath]y\in B[/inlmath] i vazi [inlmath]x\le y[/inlmath]

I sad kazu dokazimo da [inlmath]z\in\mathbb{Q}[/inlmath] ne postoji . Taj element ako bi postoja ocigledno da mora da bude pozitivan. Zasto mora da bude pozitivan nije mi jasno ?
Dalje kazu onda bi bile 3 mogucnosti:
[inlmath]z^2<2\\
z^2=2\\
z^2>2[/inlmath]
Cekaj, ako biramo da bude izmedju [inlmath]x[/inlmath] i [inlmath]y[/inlmath] koje sad tri mogucnosti ? Ukoliko je veci od [inlmath]2[/inlmath] zar to ne spada onda u element iz [inlmath]B[/inlmath], a ako je manji od [inlmath]2[/inlmath] onda upada u [inlmath]A[/inlmath]. Zasto nije jedina mogucnost da je [inlmath]z^2=2[/inlmath] jer ce tada biti izmedju ova dva. Onda se nadovezuje pitanje zasto su stavljene relacije [inlmath]\le[/inlmath] ako trazimo element izmedju. Pa ako su elementi [inlmath]x[/inlmath] i [inlmath]y[/inlmath] jednaki onda ne postoji element izmedju i nije mi jasno cemu onda taj znak i celo ovo dokazivanje ?

Idemo dalje. [inlmath]z^2=2[/inlmath] Otpada , jer ako bi [inlmath]z=\frac{p}{q},\;(p.q)=1[/inlmath] bio razlomak za ko je je [inlmath]z^2=2[/inlmath] , imali bismo [inlmath]p^2=2q^2[/inlmath] (to razumem, pomnozili smo [inlmath]2[/inlmath] i [inlmath]q[/inlmath] ), odakle , [inlmath]2|p[/inlmath] ( razumem ) i zato [inlmath]2r^2=q^2,\;r\in\mathbb{Z}[/inlmath] pa i [inlmath]2|q[/inlmath], suprotno pretpostavci [inlmath](p,q)=1[/inlmath] . E ovde mi nije jasno sta je [inlmath]r[/inlmath] i odakle se pojavljuje i onda da [inlmath]2[/inlmath] deli [inlmath]q[/inlmath] mi nije jasno jer ovo pre toga ne razumem.

Dalje. Dokazimo da je i [inlmath]z^2<2[/inlmath] nemoguce. Pretpostavimo da je to ispunjeno i izaberimo prirodan broj [inlmath]n[/inlmath] za koji je [inlmath]n>\frac{2z+1}{2-z^2}[/inlmath] (Sta je ovo ???)
Tada je :
[dispmath]\left(z +\frac{1}{n}\right)^2=z^2+\frac{2z}{n}+\frac{1}{n^2}\le z^2+\frac{2z+1}{n}<z^2+\left(2-z^2\right)=2[/dispmath]
( Zasto sabiramo [inlmath]z[/inlmath] sa [inlmath]\frac{1}{n}[/inlmath] ? sta je ovo i odakle je ispalo...)
tj da broj [inlmath]z+\frac{1}{n}[/inlmath], koji je ocigleno veci od [inlmath]z[/inlmath] ima takodje kvadrat manji od [inlmath]2[/inlmath], pa pripada skupu [inlmath]A[/inlmath], sto je suprotno izboru broja [inlmath]z[/inlmath].
Na slican nacin dokazuje se da ne moze biti ni [inlmath]z^2>2[/inlmath]. Znaci broj [inlmath]z[/inlmath] ssa pomenutim svojstivma ne moze postojati i aksioma (4)(misli se na askiomu neprekidnosti) u skupu [inlmath]\mathbb{Q}[/inlmath] ne vazi.

Hvala na pomci unapredd
lowzyyy  OFFLINE
 
Postovi: 59
Zahvalio se: 24 puta
Pohvaljen: 6 puta

Sharuj ovu temu na:

Share on Facebook Facebook Share on Twitter Twitter Share on MySpace MySpace Share on Google+ Google+

Re: Pomoc oko razumevanja aksiome neprekidnosti

Postod desideri » Subota, 17. Oktobar 2015, 22:52

Da li si siguran da je zadatak dobro nakucan?
Ako je [inlmath]x^2<2[/inlmath] u skupu [inlmath]A[/inlmath] i istovremeno [inlmath]x^2>2[/inlmath] u skupu [inlmath]B[/inlmath], ti skupovi su disjunktni po [inlmath]x[/inlmath], tj. vidim kontradikciju. Možda grešim, no neka me neko ispravi ako nije tako.
Korisnikov avatar
Zaslužni forumaš
 
Postovi: 1519
Lokacija: Beograd
Zahvalio se: 1088 puta
Pohvaljen: 837 puta

Re: Pomoc oko razumevanja aksiome neprekidnosti

Postod lowzyyy » Subota, 17. Oktobar 2015, 22:55

Ovo sam prekucavao iz knjige iz koje ucim ? Mislite konkretno na ovo sto sam zapisivao za skupove [inlmath]A[/inlmath] i [inlmath]B[/inlmath] ?
lowzyyy  OFFLINE
 
Postovi: 59
Zahvalio se: 24 puta
Pohvaljen: 6 puta

Re: Pomoc oko razumevanja aksiome neprekidnosti

Postod desideri » Subota, 17. Oktobar 2015, 22:59

Da, na to mislim. Molim te da navedes i izvor, tj koja je knjiga.
Jeste teorijsko pitanje, ali je interesantno :thumbup:
Korisnikov avatar
Zaslužni forumaš
 
Postovi: 1519
Lokacija: Beograd
Zahvalio se: 1088 puta
Pohvaljen: 837 puta

Re: Pomoc oko razumevanja aksiome neprekidnosti

Postod Onomatopeja » Subota, 17. Oktobar 2015, 22:59

@desideri Nema ovde kontradikcije (ako sam dobro razumeo u odnosu na sta posmatras kontradikciju), jer je potrebno pokazati da ne postoji racionalan broj [inlmath]z[/inlmath] sa osobinom [inlmath]x\le z\le y[/inlmath] za svako [inlmath]x\in A[/inlmath] i [inlmath]y\in B[/inlmath] (ovo poslednje je postavljac teme zaboravio da doda, a zaista je od velike vaznosti). Inace, da, ovi skupovi jesu disjunktni, ali to nam nije dovoljno da bismo pokazali da ne postoji racionalno [inlmath]z[/inlmath] sa datom osobinom.
 
Postovi: 595
Zahvalio se: 15 puta
Pohvaljen: 563 puta

Re: Pomoc oko razumevanja aksiome neprekidnosti

Postod desideri » Subota, 17. Oktobar 2015, 23:04

@Onomatopeja,
e pa to mi kaži a ne da lupam glavu oko ovoga.
No ovo je trebalo da naslovim postavljaču teme, ne tebi, izvinjavam se.
Aj ga sačekamo.
Korisnikov avatar
Zaslužni forumaš
 
Postovi: 1519
Lokacija: Beograd
Zahvalio se: 1088 puta
Pohvaljen: 837 puta

Re: Pomoc oko razumevanja aksiome neprekidnosti

Postod lowzyyy » Subota, 17. Oktobar 2015, 23:14

Knjiga je Matematicka analiza 1. Autori su Zoran Kadelburg, Dusan Adnadjevic.
Kako nisam napisao u drugoj recenici da treba da se dokaze da [inlmath]\mathbb{Q}[/inlmath] ne zadovoljava tu aksiomu ?
lowzyyy  OFFLINE
 
Postovi: 59
Zahvalio se: 24 puta
Pohvaljen: 6 puta

Re: Pomoc oko razumevanja aksiome neprekidnosti

Postod Onomatopeja » Nedelja, 18. Oktobar 2015, 00:31

Pa mozda se ne secaju svi iz prve kako glasi data aksioma.

Elem, da se mi vratimo na biznis. Na primer, zasto je [inlmath]z[/inlmath] pozitivno? Pa, primeti na primer da [inlmath]0\in A[/inlmath], a kako je [inlmath]x\le z[/inlmath] za svako [inlmath]x\in A[/inlmath], to je i [inlmath]0\le z[/inlmath]. Isto tako, za dokaz da ne postoji racionalan broj [inlmath]z[/inlmath] takav da vazi [inlmath]z^2=2[/inlmath] pogledaj npr. ovu temu. Kod tebe konkretno, i sam si rekao, vazi [inlmath]2\mid p[/inlmath], pa postoji [inlmath]r\in\mathbb{Z}[/inlmath] takvo da vazi [inlmath]p=2r[/inlmath]. Odatle, vracanjem u [inlmath]p^2=2q^2[/inlmath] dobijamo [inlmath]2r^2=q^2[/inlmath], itd.

I tako dalje, i tako dalje, odoh ja na spavanje, a ti jos malo promisli o svemu ovome (kao i ostalim delovima koji te bune).
 
Postovi: 595
Zahvalio se: 15 puta
Pohvaljen: 563 puta

Re: Pomoc oko razumevanja aksiome neprekidnosti

Postod lowzyyy » Ponedeljak, 19. Oktobar 2015, 21:53

Razumeo sam ovo za [inlmath]z^2=2[/inlmath] ali i dalje ne razumem zasto se razmatraju slucajevi kada je z vece i z manje od 2 ??? Zar ne trazimo broj izmedju ta dva ?
I jos nesto, kako smo izabrali ovo n i zasto je kod izraza kada smo kvadrirali z+1/n i nasli nzd nestalo [inlmath]n^2[/inlmath] i ostalo samo [inlmath]n[/inlmath]
lowzyyy  OFFLINE
 
Postovi: 59
Zahvalio se: 24 puta
Pohvaljen: 6 puta


Povratak na OSTALE OBLASTI ANALIZE

Ko je OnLine

Korisnici koji su trenutno na forumu: Nema registrovanih korisnika i 1 gost


Index stranicaTimObriši sve kolačiće boarda
Danas je Četvrtak, 24. Oktobar 2019, 00:54 • Sva vremena su u UTC + 1 sat [ DST ]
Pokreće ga phpBB® Forum Software © phpBB Group
Prevod – www.CyberCom.rs