Korisnički Kontrolni Panel
Pogledajte svoj profil
Pogledajte svoje postove
ČPP
Prijavite se

Matematički forum na kojem možete da diskutujete o raznim matematičkim oblastima, pomognete drugima oko rešavanja zadataka, a i da dobijete pomoć kada vam zatreba


















Index stranica OSTALE MATEMATIČKE OBLASTI TRIGONOMETRIJA

Trigonometrijski izraz

[inlmath]\sin\left(\alpha+\beta\right)=\sin\alpha\cos\beta+\cos\alpha\sin\beta[/inlmath]

Moderator: Corba248

Trigonometrijski izraz

Postod Tinjak.mirza » Nedelja, 30. Jun 2019, 18:07

Pozdrav, novi sam na forumu. Izvinjavam se ako prekršim pravo foruma unaprijed. Imam jedan zadatak iz trigonometrije, kojeg pokušavam riješiti preko dvostrukog ugla ali ne ispadne mi dobar rezultat:
[dispmath]\sin^4\frac{5\pi}{12}+\cos^4\frac{7\pi}{12}=[/dispmath] Ako zapišem ovo kao:
[dispmath]\left(2\cdot\sin\frac{5\pi}{6}\cdot\cos\frac{5\pi}{6}\right)^4+\left(\cos^2\frac{7\pi}{6}-\sin^2\frac{7\pi}{6}\right)^4[/dispmath] dobijem;
[dispmath]\frac{9}{16}+\frac{1}{16}=\frac{10}{16}[/dispmath] A u zbirci je rešenje:
[dispmath]\frac{7}{8}[/dispmath] Ako sam nešto zabrljao, oprostite.
Poslednji put menjao Daniel dana Nedelja, 30. Jun 2019, 23:51, izmenjena samo jedanput
Razlog: Korekcija Latexa; promena naziva teme („Zadatak iz trigonometrije.“) u adekvatniji
 
Postovi: 2
Zahvalio se: 6 puta
Pohvaljen: 0 puta

Sharuj ovu temu na:

Share on Facebook Facebook Share on Twitter Twitter Share on MySpace MySpace Share on Google+ Google+
  • +1

Re: Trigonometrijski izraz

Postod Ojler79532 » Nedelja, 30. Jun 2019, 18:39

[dispmath]\sin^4\frac{5\pi}{12}+\cos^4\frac{7\pi}{12}=[/dispmath][dispmath]\sin^475^\circ+\cos^475^\circ=[/dispmath][dispmath]\left(\sin^275^\circ+\cos^275^\circ\right)^2-2\sin^275^\circ\cos^275^\circ\cdot\left(\frac{2}{2}\right)=[/dispmath]
[dispmath]1-\frac{1}{2}\left(\sin150^\circ\right)^2=[/dispmath][dispmath]\vdots[/dispmath]
 
Postovi: 30
Zahvalio se: 11 puta
Pohvaljen: 19 puta

Re: Trigonometrijski izraz

Postod Ojler79532 » Nedelja, 30. Jun 2019, 19:09

A sad sam shvatio to kod tebe:
[dispmath]\sin^4\frac{5\pi}{12}+\cos^4\frac{7\pi}{12}=[/dispmath][dispmath]\left(2\sin\frac{5\pi}{\color{red}24}\cos\frac{5\pi}{\color{red}24}\right)^4+\left(\cos^2\frac{7\pi}{\color{red}24}-\sin^2\frac{7\pi}{\color{red}24}\right)^4[/dispmath]
 
Postovi: 30
Zahvalio se: 11 puta
Pohvaljen: 19 puta

Re: Trigonometrijski izraz

Postod Daniel » Nedelja, 30. Jun 2019, 23:52

^ Upravo tako. A može se uraditi i preko pomenute formule za polovinu ugla,
[dispmath]\left(\sin^2\frac{5\pi}{12}\right)^2+\left(\cos^2\frac{7\pi}{12}\right)^2=\\
\left(\frac{1-\cos\frac{5\pi}{6}}{2}\right)^2+\left(\frac{1+\cos\frac{7\pi}{6}}{2}\right)^2=\cdots[/dispmath]
@Tinjak.mirza
Bez brige, uneo sam ti korekcije u Latex (ovde imaš uputstvo kako šta da napišeš u Latexu) i stavio bolji naziv teme, ali je sve ostalo OK. :)
Poslednji put menjao Daniel dana Ponedeljak, 01. Jul 2019, 02:17, izmenjena samo jedanput
Razlog: Korekcija plusa u minus
I do not fear death. I had been dead for billions and billions of years before I was born, and had not suffered the slightest inconvenience from it. – Mark Twain
Korisnikov avatar
Daniel  OFFLINE
Administrator
 
Postovi: 7680
Lokacija: Beograd
Zahvalio se: 4039 puta
Pohvaljen: 4110 puta

Re: Trigonometrijski izraz

Postod Ojler79532 » Ponedeljak, 01. Jul 2019, 01:50

Daniele, samo ovde ti se omaklo u kucanju:
[dispmath]\left(\sin^2\frac{5\pi}{12}\right)^2=\left(\frac{1{\color{red}-}\cos\frac{5\pi}{6}}{2}\right)^2[/dispmath] A takođe, ako ti se, @Tinjak.mirza, da mnoziti onda moze i preko adicionih:
[dispmath]\sin\frac{5\pi}{12}=\sin\left(\frac{\pi}{4}+\frac{\pi}{6}\right)=\cdots[/dispmath][dispmath]\cos\frac{7\pi}{12}=\cos\left(\frac{\pi}{4}+\frac{\pi}{3}\right)=\cdots[/dispmath] I poslije je zadati izraz jednak:
[dispmath]\left(\frac{\sqrt2+\sqrt6}{4}\right)^4+\left(\frac{\sqrt2-\sqrt6}{4}\right)^4=\cdots[/dispmath][dispmath]=\frac{1}{4^4}\left(\left(8+2\sqrt{12}\right)^2+\left(8-2\sqrt{12}\right)^2\right)=\cdots[/dispmath][dispmath]=\frac{224}{256}=\frac{7}{8}[/dispmath] Eto, dobio si 3 nacina :thumbup:
 
Postovi: 30
Zahvalio se: 11 puta
Pohvaljen: 19 puta

Re: Trigonometrijski izraz

Postod Daniel » Ponedeljak, 01. Jul 2019, 02:17

Ojler79532 je napisao:Daniele, samo ovde ti se omaklo u kucanju:
[dispmath]\left(\sin^2\frac{5\pi}{12}\right)^2=\left(\frac{1{\color{red}-}\cos\frac{5\pi}{6}}{2}\right)^2[/dispmath]

Zahvaljujem. :thumbup: Korigovao sam, kako ne bi došlo do zabune.
I do not fear death. I had been dead for billions and billions of years before I was born, and had not suffered the slightest inconvenience from it. – Mark Twain
Korisnikov avatar
Daniel  OFFLINE
Administrator
 
Postovi: 7680
Lokacija: Beograd
Zahvalio se: 4039 puta
Pohvaljen: 4110 puta

Re: Trigonometrijski izraz

Postod Tinjak.mirza » Ponedeljak, 01. Jul 2019, 07:53

Zahljavujem vam se. Zadatak je urađen
 
Postovi: 2
Zahvalio se: 6 puta
Pohvaljen: 0 puta


Povratak na TRIGONOMETRIJA

Ko je OnLine

Korisnici koji su trenutno na forumu: Nema registrovanih korisnika i 5 gostiju


Index stranicaTimObriši sve kolačiće boarda
Danas je Ponedeljak, 19. Avgust 2019, 11:00 • Sva vremena su u UTC + 1 sat [ DST ]
Pokreće ga phpBB® Forum Software © phpBB Group
Prevod – www.CyberCom.rs