Korisnički Kontrolni Panel
Pogledajte svoj profil
Pogledajte svoje postove
ČPP
Prijavite se

Matematički forum na kojem možete da diskutujete o raznim matematičkim oblastima, pomognete drugima oko rešavanja zadataka, a i da dobijete pomoć kada vam zatreba


















Index stranica OSTALE MATEMATIČKE OBLASTI TEORIJA BROJEVA

Matematička indukcija, dokaz

[inlmath]a^p\equiv a\pmod p,\;a\in\mathbb{Z},\;p\in\mathbb{P}[/inlmath]

Moderator: Corba248

Matematička indukcija, dokaz

Postod mat=slabastrana » Subota, 06. Jul 2019, 16:04

Zadatak glasi: Primenom principa matematičke indukcije dokazati da za svaki prirodan broj važi:
[dispmath]\left(1-\frac{9}{2^2}\right)\left(1-\frac{9}{5^2}\right)\cdots\left(1-\frac{9}{(3n-1)^2}\right)=-\frac{3n+2}{2(3n-1)}[/dispmath] Zadatak me muči jer je ovo prvi put da vidim da je u pitanju množenje a ne sabiranje. Gledao sam na više mesta online, ali bezuspešno, tako da mi je potrebno nekakvo rešenje. Hvala unapred.
 
Postovi: 4
Zahvalio se: 3 puta
Pohvaljen: 0 puta

Sharuj ovu temu na:

Share on Facebook Facebook Share on Twitter Twitter Share on MySpace MySpace Share on Google+ Google+

Re: Matematička indukcija, dokaz

Postod Jovan111 » Subota, 06. Jul 2019, 16:57

Pozdrav! Nema nikakve veze što je u pitanju množenje, a ne sabiranje. Ovo je čak i lak primer, i radi se primenom principa matematičke indukcije (neka su [inlmath]n,i\in\mathbb{N}[/inlmath]):

  • proverimo da li je jednakost tačna za [inlmath]n=1[/inlmath];
  • ako je prethodni korak uspešan, onda pretpostavimo [inlmath]n=i[/inlmath], što će biti naša induktivna hipoteza (pretpostavka);
  • na kraju uzmemo [inlmath]n=i+1[/inlmath], te ostaje da dokažemo da su dve strane jednakosti zaista jednake.
Ukoliko jednakost bude tačna za [inlmath]n=1[/inlmath] i za [inlmath]n=i+1[/inlmath], onda mora biti tačna i za [inlmath]n=i[/inlmath], čime smo dokazali hipotezu.



Za [inlmath]n=1[/inlmath] imali bismo:
[dispmath]1-\frac{9}{2^2}=-\frac{3\cdot1+2}{2(3\cdot1-1)}\iff-\frac{5}{4}=-\frac{5}{4}[/dispmath] To smo dokazali (inače, "to" se naziva baza indukcije). Pretpostavimo zatim [inlmath]n=i[/inlmath]:
[dispmath]{\color{red}\left(1-\frac{9}{2^2}\right)\left(1-\frac{9}{5^2}\right)\cdots\left(1-\frac{9}{\left(3i-1\right)^2}\right)}=-\frac{3i+2}{2\left(3i-1\right)}[/dispmath] Na kraju ostaje dokazati da je jednakost tačna za [inlmath]n=i+1[/inlmath].
[dispmath]{\color{red}\left(1-\frac{9}{2^2}\right)\left(1-\frac{9}{5^2}\right)\cdots\left(1-\frac{9}{\left(3i-1\right)^2}\right)}\left(1-\frac{9}{\bigl(3\left(i+1\right)-1\bigr)^2}\right)=-\frac{3\left(i+1\right)+2}{2\bigl(3\left(i+1\right)-1\bigr)}[/dispmath][dispmath]-\frac{3i+2}{2\left(3i-1\right)}\cdot\left(1-\frac{9}{\bigl(3\left(i+1\right)-1\bigr)^2}\right)=-\frac{3\left(i+1\right)+2}{2\bigl(3\left(i+1\right)-1\bigr)}[/dispmath][dispmath]\vdots[/dispmath]
Korisnikov avatar
Moderator
 
Postovi: 129
Zahvalio se: 44 puta
Pohvaljen: 151 puta


Povratak na TEORIJA BROJEVA

Ko je OnLine

Korisnici koji su trenutno na forumu: Nema registrovanih korisnika i 2 gostiju

cron

Index stranicaTimObriši sve kolačiće boarda
Danas je Četvrtak, 18. Jul 2019, 23:17 • Sva vremena su u UTC + 1 sat [ DST ]
Pokreće ga phpBB® Forum Software © phpBB Group
Prevod – www.CyberCom.rs