Korisnički Kontrolni Panel
Pogledajte svoj profil
Pogledajte svoje postove
ČPP
Prijavite se

Matematički forum na kojem možete da diskutujete o raznim matematičkim oblastima, pomognete drugima oko rešavanja zadataka, a i da dobijete pomoć kada vam zatreba


















Index stranica OSTALE MATEMATIČKE OBLASTI VEROVATNOĆA

Diskretna slucajna varijabla

[inlmath]P\left(A_k/B\right)P\left(B\right)=P\left(B/A_k\right)P\left(A_k\right)[/inlmath]

Diskretna slucajna varijabla

Postod enaa » Subota, 27. Januar 2018, 17:31

Nezavisne varijable [inlmath]X[/inlmath] i [inlmath]Y[/inlmath] imaju isti zakon razdiobe [inlmath]X,Y\sim[/inlmath]
[dispmath]\begin{pmatrix}
0 & 2 & 3\\
0.2 & 0.5 & 0.3
\end{pmatrix}[/dispmath] Odredite razdiobu slucajne varijable [inlmath]2X\cdot Y[/inlmath]

ja sam to ovako rijesila, ali neznam je li tocno :unsure: :kojik:
[dispmath]2(0\cdot0)=0\hspace{5mm}2(0\cdot2)=0\hspace{5mm}2(2\cdot0)=0\hspace{5mm}2(3\cdot0)=0\hspace{5mm}2(0\cdot3)=0\\
2(2\cdot2)=2\cdot4\hspace{5mm}2(2\cdot3)=2\cdot6\hspace{5mm}2(3\cdot2)=2\cdot6\hspace{5mm}2(3\cdot3)=2\cdot9[/dispmath] i onda sam
[dispmath]P(2X\cdot Y=0)=0.36\hspace{5mm}P(2X\cdot Y=8)=0.25\hspace{5mm}P(2X\cdot Y=12)=0.3\hspace{5mm}P(2X\cdot Y=18)=0.09[/dispmath] pa sam dobila [inlmath]2X\cdot Y\sim[/inlmath]
[dispmath]\begin{pmatrix}
0 & 8 & 12 & 18\\
0.36 & 0.25 & 0.3 & 0.09
\end{pmatrix}[/dispmath]
enaa  OFFLINE
 
Postovi: 46
Zahvalio se: 0 puta
Pohvaljen: 0 puta

Sharuj ovu temu na:

Share on Facebook Facebook Share on Twitter Twitter Share on MySpace MySpace Share on Google+ Google+

Re: Diskretna slucajna varijabla

Postod Daniel » Nedelja, 28. Januar 2018, 08:20

Jeste, sasvim tačno. :correct: Kad sabereš dobijene verovatnoće, što ti uvek preporučujem da uradiš, dobiješ [inlmath]0,36+0,25+0,3+0,09=1[/inlmath] tako da se i to poklapa. (Uvek kad dobiješ da je zbir verovatnoća jednak [inlmath]1[/inlmath] to znači da je rešenje najverovatnije tačno, ali ako dobiješ da je različit od [inlmath]1[/inlmath] onda to znači da rešenje sigurno nije tačno.)

Verovatnoću [inlmath]P(2X\cdot Y=0)[/inlmath] moguće je računati na još jedan način, preko formule uključivanja i isključivanja:
[dispmath]P(2X\cdot Y=0)=P(X=0)+P(Y=0)-P(X=0\;\land\;Y=0)=\cdots[/dispmath]
enaa je napisao:ali neznam je li tocno

Ovo je gruba pravopisna greška :!:
„Ne znam“ se nikako ne piše zajedno.
I do not fear death. I had been dead for billions and billions of years before I was born, and had not suffered the slightest inconvenience from it. – Mark Twain
Korisnikov avatar
Daniel  OFFLINE
Administrator
 
Postovi: 7285
Lokacija: Beograd
Zahvalio se: 3784 puta
Pohvaljen: 3948 puta


Povratak na VEROVATNOĆA

Ko je OnLine

Korisnici koji su trenutno na forumu: Nema registrovanih korisnika i 1 gost


Index stranicaTimObriši sve kolačiće boarda
Danas je Utorak, 25. Septembar 2018, 08:53 • Sva vremena su u UTC + 1 sat [ DST ]
Pokreće ga phpBB® Forum Software © phpBB Group
Prevod – www.CyberCom.rs