Hajde de ispisem jedan dokaz za gausov integral koji sam procitao na internetu. Dolazi od Laplasa ako se ne varam.
[dispmath]I=\int\limits_{-\infty}^{+\infty}e^{-x^2}\mathrm dx[/dispmath]
Posto je funkcija parna mozemo pisati i kao:
[dispmath]I=2\int\limits_0^{+\infty}e^{-x^2}\mathrm dx[/dispmath]
Sada kvadritamo obe strane:
[dispmath]I^2=4\left(\int\limits_0^{+\infty}e^{-x^2}\mathrm dx\right)^2[/dispmath]
Pa to mozemo zapisati kao:
[dispmath]I^2=4\left(\int\limits_0^{+\infty}e^{-x^2}\mathrm dx\right)\left(\int\limits_0^{+\infty}e^{-x^2}\mathrm dx\right)[/dispmath]
Kako je sve jedno koja je promenljiva upitanju mozemo u jednom integralu staviti neku drugu:
[dispmath]I^2=4\left(\int\limits_0^{+\infty}e^{-x^2}\mathrm dx\right)\left(\int\limits_0^{+\infty}e^{-y^2}\mathrm dy\right)[/dispmath]
Pa je to isto sto i (da li bi neko mogao da objansi intuitivno ovaj deo):
[dispmath]I^2=4\int\limits_0^{+\infty}\int\limits_0^{+\infty}e^{-\left(x^2+y^2\right)}\mathrm dy\mathrm dx[/dispmath]
Smena [inlmath]y=xs,\;\mathrm dy=x\mathrm ds[/inlmath]
[dispmath]I^2=4\int\limits_0^{+\infty}\int\limits_0^{+\infty}e^{-\left(x^2+x^2s^2\right)}x\mathrm ds\mathrm dx[/dispmath]
Sada zamenimo diferencijale posto se rezultat ne menja (mislim da ima i neka teorema o redu racunanja dvojnih integrala)
[dispmath]I^2=4\int\limits_0^{+\infty}\int\limits_0^{+\infty}e^{-\left(x^2+x^2s^2\right)}x\mathrm dx\mathrm ds[/dispmath]
Smena: [inlmath]t=-x^2\left(1+s^2\right),\;\mathrm dt=-2x\left(1+s^2\right)[/inlmath]
[dispmath]\int e^{-x^2\left(1+s^2\right)}x\mathrm dx=\Big(t=-x^2\left(1+s^2\right),\;\mathrm dt=-2x\left(1+s^2\right)\mathrm dx\Big)=\\
=\int\frac{e^t}{-2\left(1+s^2\right)}\mathrm dt=\frac{e^t}{-2\left(1+s^2\right)}+C=\frac{e^{-x^2\left(1+s^2\right)}}{-2\left(1+s^2\right)}+C[/dispmath]
[dispmath]I^2=4\int\limits_0^{+\infty}\frac{e^{-x^2\left(1+s^2\right)}}{-2\left(1+s^2\right)}\Biggr|_0^{+\infty}\mathrm ds=4\int\limits_0^{+\infty}\frac{1}{2\left(1+s^2\right)}\mathrm ds=2\mathrm{arctg}(x)\Biggr|_0^{+\infty}=\pi[/dispmath][dispmath]I^2=\pi[/dispmath][dispmath]I=\sqrt{\pi}[/dispmath]
Ovaj dokaz sam trazio zato sto ne znam polarne koordinate(a ni dvojne integrale osim da su zapremina funkijce [inlmath]Z=f(x,y)[/inlmath]) ) a ovaj integral se obicno resava preko njih i deluje mi elementarno.
Formula:
[dispmath]\Gamma(1-p)\Gamma(p)=\frac{\pi}{\sin(p\pi)}[/dispmath]
Se zove Ojlerova refleksivna formula i iz nje se nalazi:
[dispmath]p=\frac{1}{2},\;\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{1}{2}\right)=\frac{\pi}{\sin\left(\frac{\pi}{2}\right)}[/dispmath][dispmath]\Gamma\left(\frac{1}{2}\right)^2=\pi[/dispmath][dispmath]\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}[/dispmath]
Dokaz za nju ima na ovom linku https://proofwiki.org/wiki/Euler%27s_Reflection_Formula. Ja pojma nemam sta tu pise
Dalje od ovoga nista nemam pojma.