Sistem diferencijalnih jednacina
Poslato: Ponedeljak, 18. Decembar 2023, 12:36
Pozdrav, treba mi pomoc oko ovog problema:
[dispmath]X'(t)=AX(t)+B(t),\;X(0)=\begin{pmatrix} 1\\ 2\\ 0 \end{pmatrix}[/dispmath] Gde je
[dispmath]A=\begin{pmatrix}
-1 & -1 & 1\\
-1 & -2a-1 & 4\\
-2 & 0 & \alpha
\end{pmatrix},[/dispmath] takvo da vazi
[dispmath]e^{\det(A)}\det\left(e^A\right)=e[/dispmath] Naime, treba odrediti [inlmath]a[/inlmath].
Veliko hvala unapred.
[dispmath]X'(t)=AX(t)+B(t),\;X(0)=\begin{pmatrix} 1\\ 2\\ 0 \end{pmatrix}[/dispmath] Gde je
[dispmath]A=\begin{pmatrix}
-1 & -1 & 1\\
-1 & -2a-1 & 4\\
-2 & 0 & \alpha
\end{pmatrix},[/dispmath] takvo da vazi
[dispmath]e^{\det(A)}\det\left(e^A\right)=e[/dispmath] Naime, treba odrediti [inlmath]a[/inlmath].
Veliko hvala unapred.