Korisnički Kontrolni Panel
Pogledajte svoj profil
Pogledajte svoje postove
ČPP
Prijavite se

Matematički forum na kojem možete da diskutujete o raznim matematičkim oblastima, pomognete drugima oko rešavanja zadataka, a i da dobijete pomoć kada vam zatreba


















Index stranica MATEMATIČKA ANALIZA KOMPLEKSNA ANALIZA

Kompleksni broj

[inlmath]e^{i\varphi}=\cos\varphi+i\sin\varphi[/inlmath]

Kompleksni broj

Postod markonikolic23 » Petak, 30. April 2021, 20:19

Medju kompleksnim brojevima [inlmath]z=x+yi[/inlmath] koji zadovoljavaju uslov [inlmath]|z-(4+3i)|=2[/inlmath] broju [inlmath]z_0=x_0+iy_0[/inlmath] odgovara tacka koja je najbliza koordinatnom pocetku. Zbir [inlmath]x_0+y_0[/inlmath] je?
[dispmath]a)\;\frac{49}{5}\quad b)\;\frac{28}{5}\quad c)\;\frac{21}{5}\quad d)\;\frac{42}{5}\quad e)\;7[/dispmath]
Ovde ne razumem sta se podrazumeva pod ovo [inlmath]z_0[/inlmath], [inlmath]x_0[/inlmath] i [inlmath]y_0[/inlmath]?
Ovaj izraz preko modula znam da izvedem, ne razumem kako se nalazi ovde tacka, da li postoji neka formula? Hvala
 
Postovi: 24
Zahvalio se: 11 puta
Pohvaljen: 1 puta

Sharuj ovu temu na:

Share on Facebook Facebook Share on Twitter Twitter Share on MySpace MySpace Share on Google+ Google+

Re: Kompleksni broj

Postod primus » Subota, 01. Maj 2021, 06:18

Iz datog uslova se dobija da je [inlmath]y=\sqrt{4-(x-4)^2}+3[/inlmath]. Rastojanje tačke od koordinatnog početka dato je izrazom [inlmath]\sqrt{x^2+y^2}[/inlmath]. Definišimo [inlmath]f(x)=\sqrt{x^2+\left(\sqrt{4-(x-4)^2}+3\right)^2}[/inlmath] i [inlmath]g(x)=x^2+\left(\sqrt{4-(x-4)^2}+3\right)^2[/inlmath]. Koordinatu [inlmath]x_0[/inlmath] dobijamo iz uslova [inlmath]f'(x)=0[/inlmath], odnosno [inlmath]g'(x)=0[/inlmath]. Bilo koju od ove dve jednačine da upotrebiš dobićeš istu vrednost za [inlmath]x_0[/inlmath] jer je [inlmath]g(x)=\left(f(x)\right)^2[/inlmath]. Kad izračunaš [inlmath]x_0[/inlmath] uvrstiš dobijenu vrednost u [inlmath]y_0=\sqrt{4-(x_0-4)^2}+3[/inlmath] i odrediš [inlmath]y_0[/inlmath].
Plenus venter non studet libenter
primus  OFFLINE
 
Postovi: 205
Zahvalio se: 14 puta
Pohvaljen: 228 puta

Re: Kompleksni broj

Postod Daniel » Četvrtak, 06. Maj 2021, 02:28

primus je napisao:Iz datog uslova se dobija da je [inlmath]y=\sqrt{4-(x-4)^2}+3[/inlmath].

Ovde se mora voditi računa da je [inlmath]y={\color{red}\pm}\sqrt{4-(x-4)^2}+3[/inlmath]. Zato se moraju razmatrati oba slučaja pa videti u kom slučaju se dobije tačka bliža koordinatnom početku.

Može se rešiti i preko analitičke geometrije. Iz datog uslova se dobija [inlmath](x-4)^2+(y-3)^2=2^2[/inlmath], što je zapravo jednačina kružnice. Tražimo onu tačku te kružnice koja je najbliža koordinatnom početku, a to će zapravo biti jedna od dve presečne tačke te kružnice i prave koja prolazi kroz njen centar i kroz koordinatni početak:

kompleksni broj.png
kompleksni broj.png (1.55 KiB) Pogledano 29 puta

Na slici je tražena tačka obeležena zeleno.
I do not fear death. I had been dead for billions and billions of years before I was born, and had not suffered the slightest inconvenience from it. – Mark Twain
Korisnikov avatar
Daniel  OFFLINE
Administrator
 
Postovi: 8652
Lokacija: Beograd
Zahvalio se: 4697 puta
Pohvaljen: 4607 puta


Povratak na KOMPLEKSNA ANALIZA

Ko je OnLine

Korisnici koji su trenutno na forumu: Nema registrovanih korisnika i 1 gost


Index stranicaTimObriši sve kolačiće boarda
Danas je Utorak, 11. Maj 2021, 03:06 • Sva vremena su u UTC + 1 sat [ DST ]
Pokreće ga phpBB® Forum Software © phpBB Group
Prevod – www.CyberCom.rs