Korisnički Kontrolni Panel
Pogledajte svoj profil
Pogledajte svoje postove
ČPP
Prijavite se

Matematički forum na kojem možete da diskutujete o raznim matematičkim oblastima, pomognete drugima oko rešavanja zadataka, a i da dobijete pomoć kada vam zatreba


















Index stranica OSTALE MATEMATIČKE OBLASTI TRIGONOMETRIJA

Broj rešenja trigonometrijske jednačine – prijemni MATF 2019.

[inlmath]\sin\left(\alpha+\beta\right)=\sin\alpha\cos\beta+\cos\alpha\sin\beta[/inlmath]

Broj rešenja trigonometrijske jednačine – prijemni MATF 2019.

Postod Vivienne » Sreda, 14. April 2021, 22:28

Prijemni ispit MATF – 26. jun 2019.
10. zadatak


Broj rešenja jednačine
[inlmath]\sin(2\cos x+2)=0[/inlmath] u intervalu [inlmath][0,2\pi][/inlmath] je:
Odgovor je [inlmath]3[/inlmath]

Kako može da se reši ovaj zadatak, pošto ne znam kako da nacrtam grafik funkcije [inlmath]f(x)=\sin(2\cos x+2)[/inlmath]?
Hvala
 
Postovi: 41
Zahvalio se: 25 puta
Pohvaljen: 48 puta

Sharuj ovu temu na:

Share on Facebook Facebook Share on Twitter Twitter Share on MySpace MySpace Share on Google+ Google+
  • +2

Re: Broj rešenja trigonometrijske jednačine – prijemni MATF 2019.

Postod Frank » Sreda, 14. April 2021, 23:01

Zbog čega misliš da mora da se crta grafik? Šta te sprečava da rešiš standardnu jednačinu (analitičkim putem)?
Frank   ONLINE
 
Postovi: 455
Zahvalio se: 219 puta
Pohvaljen: 304 puta

  • +2

Re: Broj rešenja trigonometrijske jednačine – prijemni MATF 2019.

Postod Acim » Četvrtak, 15. April 2021, 00:00

Kao što reče Frank, nema potrebe za bilo kakvim crtanjem grafika, već rešavaj jednačinu na klasičan način. Pošto je zadat interval, za svako rešenje koje dobiješ po [inlmath]x[/inlmath], radiš sledeće;
[dispmath]0\le x\le2\pi[/dispmath]
Potom podeliš sve sa [inlmath]\pi[/inlmath] i rešavanjem tih nejednačina dobićeš vrednosti po [inlmath]k[/inlmath], pri čemu gledaš da ti [inlmath]k[/inlmath] bude ceo broj. Na taj način ćeš videti koja vrednost [inlmath]k[/inlmath] zadovoljava jednačinu, a samim tim i koliki je broj rešenja te j-ne.

Naravno, u ovom intervalu može da se radi i bez ovog načina (odmah vidiš koja [inlmath]k[/inlmath] vrednost odgovara), pošto je jednostavan interval, ali npr da je bio [inlmath]\left(-7\pi,8\pi\right)[/inlmath], zgodno je ovaj način koristiti.
Acim   ONLINE
 
Postovi: 103
Zahvalio se: 55 puta
Pohvaljen: 17 puta

Re: Broj rešenja trigonometrijske jednačine – prijemni MATF 2019.

Postod Vivienne » Četvrtak, 15. April 2021, 08:53

Evo kako sam ja rešila zadatak
[dispmath]2\cos x+2=k\pi[/dispmath] I obe strane podelila sa dva
[dispmath]\cos x+1=\frac{k\pi}{2}[/dispmath] I potom sam nacrtala grafik za [inlmath]\cos x[/inlmath] i podigla ga za jedan gore pa sam stavljala različite vrednosti za [inlmath]k[/inlmath] i dobila da imam tri presečne tačke na datom intervalu.
[inlmath]k=0[/inlmath] ili [inlmath]k=1[/inlmath] jer samo za te vrednosti imam presečne tačke

Iskreno ne bih znala kako da uradim ovaj primer bez crtanja grafika.

Evo i slike
Prikačeni fajlovi
Screenshot_20210415-071708_Graphing Calc.jpg
Screenshot_20210415-071708_Graphing Calc.jpg (13.38 KiB) Pogledano 125 puta
Poslednji put menjao Daniel dana Četvrtak, 15. April 2021, 16:51, izmenjena samo jedanput
Razlog: Smanjivanje slike (tačka 14. Pravilnika); spajanje tri uzastopna posta u jedan
 
Postovi: 41
Zahvalio se: 25 puta
Pohvaljen: 48 puta

  • +2

Re: Broj rešenja trigonometrijske jednačine – prijemni MATF 2019.

Postod Frank » Četvrtak, 15. April 2021, 09:25

Vivienne je napisao:[dispmath]\cos x+1=\frac{k\pi}{2}[/dispmath]

Odnosno
[dispmath]\cos x=-1+\frac{k\pi}{2},\;k\in\mathbb{Z}[/dispmath]
Koje sve vrednosti (celobrojne) može uzeti [inlmath]k[/inlmath] tako da desna strana jednakosti pripada intervalu [inlmath][-1,1][/inlmath]? Pretpostavljam da je jasno zbog čega desna strana mora biti u intervalu [inlmath][-1,1][/inlmath].
Tačne vrednosti [inlmath]x[/inlmath]-a ne možemo odrediti (doduše, možemo jednu), ali budući da se traži broj rešenja one nam i ne trebaju.
Frank   ONLINE
 
Postovi: 455
Zahvalio se: 219 puta
Pohvaljen: 304 puta

Re: Broj rešenja trigonometrijske jednačine – prijemni MATF 2019.

Postod Vivienne » Četvrtak, 15. April 2021, 09:39

Hvala puno, ne znam zašto sam se zbunila kod tog dela
 
Postovi: 41
Zahvalio se: 25 puta
Pohvaljen: 48 puta


Povratak na TRIGONOMETRIJA

Ko je OnLine

Korisnici koji su trenutno na forumu: Acim, Google [Bot] i 14 gostiju


Index stranicaTimObriši sve kolačiće boarda
Danas je Ponedeljak, 17. Maj 2021, 21:22 • Sva vremena su u UTC + 1 sat [ DST ]
Pokreće ga phpBB® Forum Software © phpBB Group
Prevod – www.CyberCom.rs