Korisnički Kontrolni Panel
Pogledajte svoj profil
Pogledajte svoje postove
ČPP
Prijavite se

Matematički forum na kojem možete da diskutujete o raznim matematičkim oblastima, pomognete drugima oko rešavanja zadataka, a i da dobijete pomoć kada vam zatreba


















Index stranica OSTALE MATEMATIČKE OBLASTI ARITMETIKA

Magicni kvadrati

Magicni kvadrati

Postod pentagram142857 » Četvrtak, 15. Decembar 2016, 23:32

[dispmath]\begin{array}{|c|c|}\hline
16 & 9 & 2 & 7\\ \hline
6 & ? & ? & 13\\ \hline
11 & ? & ? & 4\\ \hline
1 & 8 & 15 & 10\\ \hline
\end{array}[/dispmath] Nekad sam voleo ovakve zadatke, a sad su mi prelaki. Pravila verovatno vec znate - zbir brojeva po horizontalama, vertikalama i dijagonalama treba da bude jednak.
Zaslužni forumaš
 
Postovi: 135
Zahvalio se: 49 puta
Pohvaljen: 120 puta

Sharuj ovu temu na:

Share on Facebook Facebook Share on Twitter Twitter Share on MySpace MySpace Share on Google+ Google+

Re: Magicni kvadrati

Postod Corba248 » Petak, 10. Mart 2017, 19:20

Odgovor je:
[dispmath]\begin{array}{|c|c|c|} \hline
16&9&2&7\\ \hline
6&3&12&13\\ \hline
11&14&5&4\\ \hline
1&8&15&10\\ \hline
\end{array}[/dispmath] Evo još jednog:
[dispmath]\begin{array}{|c|c|c|} \hline
16&3&2&13\\ \hline
5&10&11&8\\ \hline
9&6&7&12\\ \hline
4&15&14&1\\ \hline
\end{array}[/dispmath] Morao sam malo da prelistam literaturu, i naišao sam na neke zanimljive podatke kojima nisam mogao da odolim.
Naime, gore pomenuti magičan kvadrat je reda [inlmath]4[/inlmath], prvi konstruisan magičan kvadrat je (logično) bio reda [inlmath]3[/inlmath] i to u Kini još pre nove ere. Tom magičnom kvadratu dugo je bilo pripisivano mistično značenje :) . Čak se ovaj moj našao na poznatoj graviri Albrehta Direra iz 1514.
Kasnije je dokazano da se može konstruisati magičan kvadrat proizvoljnog reda. Ako neko bude zainteresovan mogu postovati i taj dokaz ovde. Zasad što bi autori mnogih matematičkih zbirki rekli: "Dokaz ostavljamo kao vežbu čitaocu". Različitih magičnih kvadrata reda [inlmath]4[/inlmath] ima [inlmath]7040[/inlmath].
Još da napomenem da postoji i specijalna grupa magičnih kvadrata koji se nazivaju, vrlo interesantno, đavolski (ili savršeni, ali ja ću se držati ovog prvog radi zanimljivosti). Dakle, đavolski kvadrat je magični kvadrat kod kog nije samo zbir brojeva u svakoj vrsti, koloni i dijagonali jednak, već i u svakoj izlomljenoj dijagonali. Pod "izlomljenom" dijagonalom podrazumevamo dijagonalu kvadrata koji se može dobiti od polaznog ako bi se kvadrat podelio na dva pravougaonika, pa zatim ti delovi zamenili mesta. Može se dokazati da ne postoje đavolski kvadrati reda [inlmath]n=2(2m+1)[/inlmath]. Evo jednog đavolskog kvadrata:
[dispmath]\begin{array}{|c|c|c|} \hline
1&14&{\color{blue}4}&15\\ \hline
8&{\color{blue}11}&5&10\\ \hline
{\color{blue}13}&2&16&3\\ \hline
12&7&9&{\color{blue}6}\\ \hline
\end{array}[/dispmath] Plavom bojom označena je izlomljena dijagonala.
Postoje i latinski kvadrati, da ih pomenem radi potpunosti svog izlaganja iako mi nisu dragi kao ovi iznad. To su kvadratne tablice veličine [inlmath]n\times{n}[/inlmath] kod kojih je svako polje popunjeno jednim od [inlmath]n[/inlmath] različitih elemenata, tako da se u svakoj vrsti i svakoj koloni pojavljuje svaki od tih brojeva.
Zaslužni forumaš
 
Postovi: 314
Zahvalio se: 37 puta
Pohvaljen: 352 puta

Re: Magicni kvadrati

Postod miletrans » Petak, 10. Mart 2017, 23:52

Ako mi je dozvoljeno, dodao bih još par informacija o kvadratu sa Direrove grafike koji je pomenuo Corba248. U poslednjem redu u sredini se nalazi godina kada je slika nastala ([inlmath]1514[/inlmath]). Ne samo da je zbir svakog reda, kolone i dijagonale isti ([inlmath]34[/inlmath]), nego ako se kvadrat [inlmath]4\times4[/inlmath] podeli na četiri manja kvadrata [inlmath]2\times2[/inlmath] (svaka stranica velikog se deli po sredini), zbir brojeva u svakom malom kvadratu će biti [inlmath]34[/inlmath]. Takođe, ako se saberu brojevi iz uglova velikog kvadrata, dobija se zbir, pogađate, [inlmath]34[/inlmath]!

Ovo mi je svojevremeno ispričao profesor likovnog u gimnaziji. Pa neka posle neko kaže da matematika nije umetnost i da umetnost nije matematika!

P. S. Neka mi se ne zameri offtopic, ali mislim da ove informacije mogu da budu interesantne forumašima. :)
Globalni moderator
 
Postovi: 514
Zahvalio se: 51 puta
Pohvaljen: 601 puta

Re: Magicni kvadrati

Postod Daniel » Subota, 11. Mart 2017, 09:37

Super što je oživljena ova zanimljiva tema. :thumbup:

Corba248 je napisao:Kasnije je dokazano da se može konstruisati magičan kvadrat proizvoljnog reda.

...izuzev reda [inlmath]2[/inlmath]. Magični kvadrat [inlmath]2\times2[/inlmath] nije moguće napraviti. (Magični kvadrat [inlmath]1.[/inlmath] reda je ionako trivijalan – samo jedna ćelija.)

Pokušaću i ja malo da doprinesem ovoj temi time što ću pokazati vezu između reda magičnog kvadrata i zbira brojeva po vrsti/koloni/dijagonali.
Pre svega, magični kvadrat [inlmath]n[/inlmath]-tog reda ima [inlmath]n^2[/inlmath] ćelija, a toliko ima i različitih elemenata. Budući da je najmanji element [inlmath]1[/inlmath], a da je razlika dva susedna elementa (poređanih po vrednosti) takođe [inlmath]1[/inlmath], znači da imamo aritmetički niz od [inlmath]n^2[/inlmath] elemenata kod koga je [inlmath]a_1=1[/inlmath] i [inlmath]d=1[/inlmath]. Poslednji član će imati onoliku vrednost koliko imamo elemenata, tj. iznosiće [inlmath]a_{n^2}=n^2[/inlmath].
Suma elemenata po svim poljima magičnog kvadrata biće, prema tome, jednaka sumi tog aritmetičkog niza, [inlmath]S_{n^2}=\frac{n^2}{2}\left(1+n^2\right)[/inlmath]. Sumu elemenata po jednoj vrsti dobićemo tako što sumu po svim poljima (koja predstavlja i sumu po svim vrstama) – podelimo brojem vrsta. A broj vrsta iznosi, naravno, [inlmath]n[/inlmath].
Ovime dolazimo do traženog rezultata, [inlmath]S=\frac{n}{2}\left(1+n^2\right)[/inlmath], a primenom te formule i do sledeće tabele:
[dispmath]\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline
\text{Red magičnog kvadrata} & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\\ \hline
\text{Suma po vrsti/koloni/dijagonali} & 15 & 34 & 65 & 111 & 175 & 260 & 369 & 505\\ \hline
\end{array}[/dispmath]
I do not fear death. I had been dead for billions and billions of years before I was born, and had not suffered the slightest inconvenience from it. – Mark Twain
Korisnikov avatar
Daniel  OFFLINE
Administrator
 
Postovi: 8841
Lokacija: Beograd
Zahvalio se: 4896 puta
Pohvaljen: 4732 puta

Re: Magicni kvadrati

Postod nspasic66 » Utorak, 31. Oktobar 2017, 08:12

Zna li neko da resi ovaj zadatak.

Potrebno je popuniti kvadrat [inlmath]5\times5[/inlmath] brojevima [inlmath]1,2,3[/inlmath], tako da zbir brojeva vertikalno ,horizontalno i po dijagonali bude razlicit.
Poslednji put menjao Daniel dana Utorak, 31. Oktobar 2017, 16:55, izmenjena samo jedanput
Razlog: Dodavanje Latex-tagova – tačka 13. Pravilnika
 
Postovi: 1
Zahvalio se: 0 puta
Pohvaljen: 1 puta

Re: Magicni kvadrati

Postod Daniel » Utorak, 31. Oktobar 2017, 16:55

Ja dobijem da nema rešenja...
I do not fear death. I had been dead for billions and billions of years before I was born, and had not suffered the slightest inconvenience from it. – Mark Twain
Korisnikov avatar
Daniel  OFFLINE
Administrator
 
Postovi: 8841
Lokacija: Beograd
Zahvalio se: 4896 puta
Pohvaljen: 4732 puta

Magični kvadrat

Postod primus » Subota, 12. Decembar 2020, 06:46

Magični kvadrat a la Dürer:
Prikačeni fajlovi
2021.png
2021.png (12.28 KiB) Pogledano 1094 puta
Plenus venter non studet libenter
Korisnikov avatar
primus  OFFLINE
 
Postovi: 232
Zahvalio se: 15 puta
Pohvaljen: 278 puta

Re: Magični kvadrat

Postod ubavic » Subota, 12. Decembar 2020, 14:35

Ti si ga pronašao? :D


BTW: Pre godinu dana na Facebook stranici Matemanije postavljen je album poštanskih markica sa matematičkim motivima. Tu su i markice sa Direrovim magičnim kvadratom ali i geometrijskim magičnim kvadratom
ubavic  OFFLINE
Zaslužni forumaš
 
Postovi: 589
Zahvalio se: 375 puta
Pohvaljen: 588 puta

Re: Magični kvadrat

Postod primus » Subota, 12. Decembar 2020, 15:14

Pronašao ga je Python program koji sam napisao.
Plenus venter non studet libenter
Korisnikov avatar
primus  OFFLINE
 
Postovi: 232
Zahvalio se: 15 puta
Pohvaljen: 278 puta

Re: Magicni kvadrati

Postod Daniel » Ponedeljak, 14. Decembar 2020, 01:25

Nađoh softverski da ovakvih magičnih kvadrata [inlmath]4\times4[/inlmath] po principu Dürerovog, ima ukupno [inlmath]3456[/inlmath]. Ovde je taj moj softver u JavaScriptu (mada, priznajem, taj moj kôd nit je nešto elegantan nit je brzinski baš optimizovan – al' može da posluži).
Ovaj kvadrat koji je primus priložio dobio bi se mojim programom za redni broj [inlmath]2612[/inlmath] i za [inlmath]7[/inlmath] kao najmanji broj u kvadratu.
Baš zanimljivo – od ukupno [inlmath]7040[/inlmath] „standardnih“ [inlmath]4\times4[/inlmath] magičnih kvadrata (zbir isti po vrstama, kolonama i dijagonalama), čak [inlmath]3456[/inlmath] (skoro polovina!) jesu takvi da imaju isti zbir i po četiri kvadrata [inlmath]2\times2[/inlmath] i po četiri ugaona polja.
Pri tome, svih [inlmath]7040[/inlmath] „standardnih“ magičnih kvadrata [inlmath]4\times4[/inlmath] imaju zbir po četiri ugaona polja isti kao i po vrstama, kolonama i dijagonalama. To jest, nemoguće je napraviti [inlmath]4\times4[/inlmath] magični kvadrat s istim zbirom po vrstama, kolonama i dijagonalama koji neće istovremeno imati isti takav zbir i po četiri ugaona polja.
I do not fear death. I had been dead for billions and billions of years before I was born, and had not suffered the slightest inconvenience from it. – Mark Twain
Korisnikov avatar
Daniel  OFFLINE
Administrator
 
Postovi: 8841
Lokacija: Beograd
Zahvalio se: 4896 puta
Pohvaljen: 4732 puta


Povratak na ARITMETIKA

Ko je OnLine

Korisnici koji su trenutno na forumu: Nema registrovanih korisnika i 6 gostiju


Index stranicaTimObriši sve kolačiće boarda
Danas je Subota, 04. Decembar 2021, 18:37 • Sva vremena su u UTC + 1 sat
Pokreće ga phpBB® Forum Software © phpBB Group
Prevod – www.CyberCom.rs