Geometrijsko mesto preseka pravih

PostPoslato: Petak, 30. April 2021, 20:13
od markonikolic23
Date su tacke [inlmath]A(-2,0)[/inlmath] i [inlmath]B(2,0)[/inlmath]. Tacke [inlmath]C[/inlmath] i [inlmath]D[/inlmath] pripadaju normalama u tackama [inlmath]A[/inlmath], odnosno [inlmath]B[/inlmath], na duz [inlmath]AB[/inlmath], pri cemu je ugao [inlmath]\angle COD[/inlmath] prav. Geometrijsko mesto preseka pravih [inlmath]AD[/inlmath] i [inlmath]BC[/inlmath] je
A) hiperbola
B) elipsa
V) parabola
G) prava
D) duz

Ja sam preko Geogebre skicirao ovo, i dobio da je [inlmath]ABCD[/inlmath] pravougaonik. Mesto preseka [inlmath]AD[/inlmath] i [inlmath]BC[/inlmath] je upravo mesto preseka dijagonala i ova tacka se nalazi u centru pravougaonika
I sad da li je to mozda parabola?
Jer po definiciji
Geometrijsko mesto tacaka kod koga su rastojanja svake zasebne tacke od date tacke i date prave- jednaka je parabola.

Nisam bas siguran. Hvala

Re: Geometrijsko mesto preseka pravih

PostPoslato: Ponedeljak, 03. Maj 2021, 21:38
od emi
Posto je u pitanju pravougaonik, meni to lici na elipsu.

Re: Geometrijsko mesto preseka pravih

PostPoslato: Ponedeljak, 17. Maj 2021, 00:51
od Daniel
markonikolic23 je napisao:Ja sam preko Geogebre skicirao ovo, i dobio da je [inlmath]ABCD[/inlmath] pravougaonik.

Na osnovu čega? Nigde u tekstu nije rečeno da je [inlmath]CD\parallel AB[/inlmath]. Rečeno je samo da tačke [inlmath]C[/inlmath] i [inlmath]D[/inlmath] pripadaju normalama na [inlmath]AB[/inlmath] u tačkama [inlmath]A[/inlmath] i [inlmath]B[/inlmath] respektivno, ali nije rečeno da [inlmath]C[/inlmath] i [inlmath]D[/inlmath] imaju jednake [inlmath]y[/inlmath]-koordinate.

Dakle, štos je u sledećem – jedna od tačaka [inlmath]C[/inlmath] ili [inlmath]D[/inlmath], recimo neka bude [inlmath]C[/inlmath], „šeta“ se gore-dole po toj normali kojoj pripada (pri čemu se automatski „šeta“ i ona druga tačka [inlmath]D[/inlmath], jer je njen položaj na njenoj normali određen uslovom da je [inlmath]OC\perp OD[/inlmath]). Time se pomera i posmatrani presek duži [inlmath]AD[/inlmath] i [inlmath]BC[/inlmath]. E, ta tačka preseka prilikom svog pomeranja opisuje neku krivu, i traži se koja je to kriva.

Da bi se to odredilo, označimo promenljivu [inlmath]y[/inlmath]-koordinatu tačke [inlmath]C[/inlmath] sa [inlmath]y_C[/inlmath] (mogli smo to da uradimo i s tačkom [inlmath]D[/inlmath], potpuno svejedno) i odredimo jednačine pravih koje sadrže [inlmath]OC[/inlmath] i [inlmath]OD[/inlmath] (koristeći činjenicu da su međusobno normalne, a znamo vezu između koeficijenata pravaca međusobno normalnih pravih). U tako određenim jednačinama pravih figurisaće [inlmath]y_C[/inlmath]. Koordinate tačke preseka zadovoljavaće obe jednačine (jer tačka preseka pripada obema pravama), i potrebno je iz jedne jednačine izraziti [inlmath]y_C[/inlmath] a zatim je uvrstiti u drugu jednačinu, kako bismo se te promenljive oslobodili. Ostaće samo [inlmath]x[/inlmath] i [inlmath]y[/inlmath], što će, kad se malo sredi, dati dobro poznatu jednačinu neke od krivih. Pokušajte tako, pa javite ako treba dodatna pomoć.



Moguće je rezultat proveriti u Geogebri, ako se sve ispravno konstruiše – dakle, [inlmath]ABCD[/inlmath] nije pravougaonik (osim u specijalnom slučaju položaja tačaka [inlmath]C[/inlmath] i [inlmath]D[/inlmath]). Nakon ispravno obavljene konstrukcije, jedna od tačaka [inlmath]C[/inlmath] ili [inlmath]D[/inlmath], recimo neka bude tačka [inlmath]C[/inlmath], može slobodno da se pomera po svojoj normali, dok će položaj one druge tačke [inlmath]D[/inlmath] biti zavisan od te prve tačke [inlmath]C[/inlmath]. Označi se tačka preseka [inlmath]AD[/inlmath] i [inlmath]BC[/inlmath] i za tu tačku preseka uključi se opcija „Trace On“, kako bi se prilikom pomeranja tačke [inlmath]C[/inlmath] ocrtavao „trag“ preseka pravih, koji će nam jasno pokazati oblik te krive koju tražimo.

Re: Geometrijsko mesto preseka pravih

PostPoslato: Ponedeljak, 17. Maj 2021, 12:02
od emi
Na kraju dobijam [inlmath]y^2+x^2=0[/inlmath], a to je kruznica.
Da li sam negde pogresila? :kojik:

Re: Geometrijsko mesto preseka pravih

PostPoslato: Ponedeljak, 17. Maj 2021, 13:05
od Daniel
[inlmath]y^2+x^2=0[/inlmath] nije kružnica, već tačka.
Očigledno je da negde imaš grešku.

Re: Geometrijsko mesto preseka pravih

PostPoslato: Ponedeljak, 17. Maj 2021, 13:27
od emi
U pravu si, skroz sam promasila. Nisam lepo procitala ono sto si napisao. :facepalm:
Na kraju sam dobila (ako ponovo nisam pogresila) [inlmath]\frac{x^2}{4}+y^2=1[/inlmath], a to je elipsa.

Re: Geometrijsko mesto preseka pravih

PostPoslato: Ponedeljak, 17. Maj 2021, 13:30
od Daniel
To je to. :good: :correct:

Re: Geometrijsko mesto preseka pravih

PostPoslato: Ponedeljak, 17. Maj 2021, 13:33
od emi
Hvala puno :)

Re: Geometrijsko mesto preseka pravih

PostPoslato: Ponedeljak, 17. Maj 2021, 21:39
od Vivienne
Da li može neko da nađe gde sam pogrešila?

Prava [inlmath]BC\colon y=-\frac{y_c}{4}x+\frac{y_c}{2}[/inlmath]
Prava [inlmath]AD\colon y=\frac{4}{y_c}x+\frac{8}{y_c}[/inlmath]
Iz prve sam izrazila [inlmath]y_c=\frac{4y}{2-x}[/inlmath] i ubacila u drugu [inlmath]y=\frac{(2-x)x}{y}+\frac{4-2x}{y}\;\Longrightarrow\;x^2+y^2=4[/inlmath]
Hvala

Re: Geometrijsko mesto preseka pravih

PostPoslato: Ponedeljak, 17. Maj 2021, 23:17
od emi
Vivienne je napisao:Prava [inlmath]AD\colon y=\frac{4}{y_c}x+\frac{8}{y_c}[/inlmath]

Za pravu [inlmath]AD[/inlmath] se dobija [inlmath]AD\colon y=\frac{1}{y_c}x+\frac{2}{y_c}[/inlmath]
Pretpostavljam da si koristila koeficijente pravih [inlmath]BC[/inlmath] i [inlmath]AD[/inlmath] za normalnost, ali te prave nisu normalne.
U zadatku je receno da je [inlmath]CO\perp DO[/inlmath], pa ispada da je [inlmath]y_D=\frac{4}{y_c}[/inlmath].

Re: Geometrijsko mesto preseka pravih

PostPoslato: Utorak, 18. Maj 2021, 09:06
od Vivienne
Hvala ti puno, ja sam zadatak radila tako da je [inlmath]O[/inlmath] presečna tačka [inlmath]CB[/inlmath] i [inlmath]AD[/inlmath] :facepalm: , a tačka [inlmath]O[/inlmath] je koordinatni početak.